Tìm số giá trị nguyên của tham số $m\in \left( -10;10 \right)$ để phương trình ${{\left( \sqrt{10}+1 \right)}^{{{x}^{2}}}}+m.{{\left( \sqrt{10}-1 \right)}^{{{x}^{2}}}}={{2.3}^{{{x}^{2}}+1}}$ có đúng hai nghiệm phân biệt?
A. 14
B. 15
C. 13
D. 16
Hướng dẫn giải:
Đáp án B.
${{\left( \sqrt{10}+1 \right)}^{{{x}^{2}}}}+m.{{\left( \sqrt{10}-1 \right)}^{{{x}^{2}}}}={{2.3}^{{{x}^{2}}+1}}$ \( \Leftrightarrow {{\left( \frac{\sqrt{10}+1}{3} \right)}^{{{x}^{2}}}}+m.{{\left( \frac{\sqrt{10}-1}{3} \right)}^{{{x}^{2}}}}=6 \) (1)
Đặt \(t={{\left( \frac{\sqrt{10}+1}{3} \right)}^{{{x}^{2}}}},t>0\)\(\Rightarrow {{\left( \frac{\sqrt{10}-1}{3} \right)}^{{{x}^{2}}}}=\frac{1}{t}\)
(1)$\Leftrightarrow t+m.\frac{1}{t}=6\Leftrightarrow {{t}^{2}}-6t+m=0$ (2)
Để (1) có đúng hai nghiệm phân biệt khi và chỉ khi (2) có một nghiệm lớn hơn 1.
$(2)\Leftrightarrow m=-{{t}^{2}}+6t$
Xét hàm số $f(t)=-{{t}^{2}}+6t$ trên khoảng $\left( 1;+\infty \right)$, ta có:
${f}'(t)=-2t+6;{f}'(t)=0\Leftrightarrow t=3$
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy: $m<5$ hoặc m = 9 là giá trị thỏa mãn yêu cầu bài toán.
Do $m\in \left( -10;10 \right)$ \( \Rightarrow m\in \left\{ -9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;9 \right\} \)
Vậy có 15 giá trị m cần tìm.
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Thông Tin Hỗ Trợ Thêm!
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!