Tìm m để phương trình: \( \left( m-1 \right)\log _{\frac{1}{2}}^{2}{{\left( x-2 \right)}^{2}}+4\left( m-5 \right){{\log }_{\frac{1}{2}}}\frac{1}{x-2}+4m-4=0 \) có nghiệm trên \( \left[ \frac{5}{2};4 \right] \).
A. \( m\in \mathbb{R} \)
B. \( -3\le m\le \frac{7}{3} \)
C. \( m\in \emptyset \)
D. \( -3<m\le \frac{7}{3} \)
Hướng dẫn giải:
Đáp án B.
Điều kiện: x > 2.
Phương trình đã cho
\( \Leftrightarrow \left( m-1 \right){{\left[ {{\log }_{\frac{1}{2}}}{{\left( x-2 \right)}^{2}} \right]}^{2}}+4\left( m-5 \right){{\log }_{2}}\left( x-2 \right)+4m-4=0 \)
\( \Leftrightarrow \left( m-1 \right){{\left[ -2{{\log }_{2}}\left( x-2 \right) \right]}^{2}}+4\left( m-5 \right){{\log }_{2}}\left( x-2 \right)+4m-4=0 \)
\( \Leftrightarrow 4\left( m-1 \right)\log _{2}^{2}\left( x-2 \right)+4\left( m-5 \right){{\log }_{2}}\left( x-2 \right)+4m-4=0 \)
\( \Leftrightarrow \left( m-1 \right)\log _{2}^{2}\left( x-2 \right)+\left( m-5 \right){{\log }_{2}}\left( x-2 \right)+m-1=0 \)
Đặt \( t={{\log }_{2}}\left( x-2 \right) \). Vì \( x\in \left[ \frac{5}{2};4 \right]\Rightarrow t\in \left[ -1;1 \right] \).
Phương trình (1) trở thành \( \left( m-1 \right){{t}^{2}}+\left( m-5 \right)t+m-1=0 \), \( t\in \left[ -1;1 \right] \) (2)
\(\Leftrightarrow m=\frac{{{t}^{2}}+5t+1}{{{t}^{2}}+t+1}=f(t),t\in \left[ -1;1 \right]\)
Ta có: \({f}'(t)=\frac{-4{{t}^{2}}+4}{{{\left( {{t}^{2}}+t+1 \right)}^{2}}}=0\Leftrightarrow \left[ \begin{align} & t=2 \\ & t=-2 \\ \end{align} \right.\)
Bảng biến thiên:
Phương trình đã cho có nghiệm \(x\in \left[ \frac{5}{2};4 \right]\) khi phương trình (2) có nghiệm \(t\in \left[ -1;1 \right]\).
Từ bảng biến thiên suy ra \(-3\le m\le \frac{7}{3}\).
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Thông Tin Hỗ Trợ Thêm!
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!