Tất cả các giá trị thực của tham số m, để đồ thị hàm số y=x^4−2(2−m)x^2+m^2−2m−2 không cắt trục hoành

Tất cả các giá trị thực của tham số m, để đồ thị hàm số  \( y={{x}^{4}}-2\left( 2-m \right){{x}^{2}}+{{m}^{2}}-2m-2 \) không cắt trục hoành.

A. \( m\ge \sqrt{3}+1 \)

B.  \( m<3 \)                     

C.  \( m>\sqrt{3}+1 \)     

D.  \( m>3 \)

Hướng dẫn giải:

Đáp án C.

Xét phương trình hoành độ giao điểm  \( {{x}^{4}}-2\left( 2-m \right){{x}^{2}}+{{m}^{2}}-2m-2=0 \)     (1)

Đặt  \( t={{x}^{2}}\ge 0 \). Phương trình (1) trở thành  \( {{t}^{2}}-2\left( 2-m \right)t+{{m}^{2}}-2m-2=0 \)    (2)

Đồ thị hàm số không cắt trục hoành  \( \Leftrightarrow (1) \) vô nghiệm  \( \Leftrightarrow (2) \) vô nghiệm hoặc có nghiệm âm

Hay \(\Leftrightarrow \left[ \begin{align} & {\Delta }’=-2m+6<0 \\ & \left\{\begin{matrix} {\Delta }’=-2m+6\ge 0 \\  2-m<0 \\  {{m}^{2}}-2m-2>0 \end{matrix}\right. \end{align} \right. \)

\(\Leftrightarrow \left[ \begin{align} & m>3 \\ & \left\{\begin{matrix} m\le 3 \\  m>2 \\  m>1+\sqrt{3} \vee m<1-\sqrt{3} \end{matrix}\right. \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & m>3 \\  & 1+\sqrt{3}<m\le 3 \\ \end{align} \right.\Leftrightarrow m>1+\sqrt{3} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *