Tập hợp các điểm biểu diễn số phức z thỏa mãn \( \left| z-i \right|=\left| (1+i)z \right| \) là một đường tròn, tâm của đường tròn đó có tọa độ là:
A. (1;1)
B. (0;-1)
C. (0;1)
D. (-1;0)
Hướng dẫn giải:
Đáp án B.
Đặt \( z=x+yi\text{ }(x,y\in \mathbb{R}) \).
Ta có: \( \left| z-i \right|=\left| (1+i)z \right|\Leftrightarrow \left| x+(y-1)i \right|=\left| (1+i)(x+yi) \right| \)
\( \Leftrightarrow \left| x+(y-1)i \right|=\left| (x-y)+(x+y)i \right|\Leftrightarrow {{x}^{2}}+{{(y-1)}^{2}}={{(x-y)}^{2}}+{{(x+y)}^{2}} \)
\( \Leftrightarrow {{x}^{2}}+{{y}^{2}}+2y-1=0\Leftrightarrow {{x}^{2}}+{{(y+1)}^{2}}=2 \).
Vậy tập hợp các điểm biểu diễn số phức z là đường tròn có tâm \( (0;-1) \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!