Tập hợp A={x=2n+6n−2∣∣x∈N;n∈N} có bao nhiêu tập hợp con

Tập hợp \(A=\left\{ \left. x=\frac{2n+6}{n-2} \right|x\in \mathbb{N};n\in \mathbb{N} \right\}\) có bao nhiêu tập hợp con?

A. 4.

B. 8.

C. 16.                               

D. 1.

Hướng dẫn giải:

Chọn C

Ta có:  \( x=\frac{2n+6}{n-2}=2+\frac{10}{n-2} \).

Khi đó:  \( x\in \mathbb{N}\Rightarrow 10\vdots (n-2)\Rightarrow \left[ \begin{align}  & n-2=-1 \\  & n-2=1 \\  & n-2=2 \\  & n-2=-2 \\  & n-2=5 \\ & n-2=-5 \\  & n-2=10 \\  & n-2=-10 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & n=1\Rightarrow x=-8\text{ }(\ell ) \\  & n=3\Rightarrow x=12 \\  & n=4\Rightarrow x=7 \\  & n=0\Rightarrow x=-3\text{ }(\ell ) \\  & n=7\Rightarrow x=4 \\ & n=-3\text{ }(\ell ) \\  & n=12\Rightarrow x=3 \\  & n=-8\text{ }(\ell ) \\ \end{align} \right. \).

Suy ra tập hợp A có 4 phần tử.

Vậy tập hợp A có  \( {{2}^{4}}=16 \) tập hợp con.

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *