Số phức \( z=a+bi,\text{ }a,b\in \mathbb{R} \) là nghiệm của phương trình \( \frac{\left( \left| z \right|-1 \right)\left( 1+iz \right)}{z-\frac{1}{{\bar{z}}}}=i \). Tổng \( T={{a}^{2}}+{{b}^{2}} \) bằng
A. 4
B. \( 4-2\sqrt{3} \)
C. \( 3+2\sqrt{2} \)
D. 3
Hướng dẫn giải:
Đáp án C.
Điều kiện: \( z\ne 0;\text{ }z\ne 1 \).
Ta có: \( \frac{\left( \left| z \right|-1 \right)\left( 1+iz \right)}{z-\frac{1}{{\bar{z}}}}=i\Leftrightarrow \left( \left| z \right|-1 \right)\left( \bar{z}+i{{\left| z \right|}^{2}} \right)=\left( {{\left| z \right|}^{2}}-1 \right)i \)
\( \Leftrightarrow \bar{z}+i{{\left| z \right|}^{2}}=\left( \left| z \right|+1 \right)i\Leftrightarrow \bar{z}=\left( -{{\left| z \right|}^{2}}+\left| z \right|+1 \right)i \)
\( \left| {\bar{z}} \right|=\pm \left( -{{\left| z \right|}^{2}}+\left| z \right|+1 \right)\Leftrightarrow {{\left| z \right|}^{2}}=1 hoặc {{\left| z \right|}^{2}}-2\left| z \right|-1=0\Leftrightarrow \left| z \right|=1+\sqrt{2}\Leftrightarrow {{\left| z \right|}^{2}}=3+2\sqrt{2} \)
Vậy \( T={{a}^{2}}+{{b}^{2}}=3+2\sqrt{2} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!