Số nghiệm thực của phương trình \( 3{{\log }_{3}}(x-1)-{{\log }_{\frac{1}{3}}}{{(x-5)}^{3}}=3 \) là:
A. 3.
B. 1.
C. 2.
D. 0.
Hướng dẫn giải:
Chọn B
Điều kiện: \( x>5 \).
\( 3{{\log }_{3}}(x-1)-{{\log }_{\frac{1}{3}}}{{(x-5)}^{3}}=3\Leftrightarrow 3{{\log }_{3}}(x-1)+3{{\log }_{3}}(x-5)=3 \)
\( \Leftrightarrow {{\log }_{3}}(x-1)+{{\log }_{3}}(x-5)=1\Leftrightarrow {{\log }_{3}}\left[ (x-1)(x-5) \right]=1\Leftrightarrow (x-1)(x-5)=3 \)
\( \Leftrightarrow {{x}^{2}}-6x+2=0\Leftrightarrow x=3\pm \sqrt{7} \).
So sánh điều kiện suy ra phương trình có 1 nghiệm là \( x=3+\sqrt{7} \).
Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Toán - Lý - Hóa từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài phát hành!
Error: View 4055aa7517 may not exist
No comment yet, add your voice below!