Phương trình e^x−e^√2x+1=1−x^2+2√2x+1 có nghiệm trong khoảng nào

Phương trình \( {{e}^{x}}-{{e}^{\sqrt{2x+1}}}=1-{{x}^{2}}+2\sqrt{2x+1} \) có nghiệm trong khoảng nào?

A. \( \left( 2;\frac{5}{2} \right) \).

B.  \( \left( \frac{3}{2};2 \right) \).             

C.  \( \left( 1;\frac{3}{2} \right) \).              

D.  \( \left( \frac{1}{2};1 \right) \).

Hướng dẫn giải:

Chọn A

Điều kiện:  \( x\ge -\frac{1}{2} \).

 \( {{e}^{x}}-{{e}^{\sqrt{2x+1}}}=1-{{x}^{2}}+2\sqrt{2x+1}\Leftrightarrow {{e}^{x}}-{{e}^{\sqrt{2x+1}}}=-{{(x+1)}^{2}}+{{\left( \sqrt{2x+1}+1 \right)}^{2}} \)

 \( \Leftrightarrow {{e}^{x}}+{{(x+1)}^{2}}={{e}^{\sqrt{2x+1}}}+{{\left( \sqrt{2x+1}+1 \right)}^{2}}\,\,\,\,\,\,\,\,(*) \)

Xét hàm số  \( f(t)={{e}^{t}}+{{(t+1)}^{2}} \) với  \( t\ge -\frac{1}{2} \).

 \( {f}'(t)={{e}^{t}}+2(t+1)>0 \) với mọi  \( t\ge -\frac{1}{2} \).

Suy ra hàm số đồng biến trên  \( \left[ -\frac{1}{2};+\infty  \right) \).

 \( (*)\Leftrightarrow f(x)=f\left( \sqrt{2x+1} \right)\Leftrightarrow x=\sqrt{2x+1}\Leftrightarrow \left\{ \begin{align}  & x\ge 0 \\  & {{x}^{2}}=2x+1 \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & x\ge 0 \\  & {{x}^{2}}-2x-1=0 \\ \end{align} \right. \) \( \begin{cases} x\ge 0 \\\left[\begin{array}{l} x=1-\sqrt{2} \\ x=1+\sqrt{2}\end{array}\right.\end{cases} \Leftrightarrow x=1+\sqrt{2}\).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài phát hành!

Error: View 31213d2pw6 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *