Phương trình (1/9)^x-m(1/3)^x+2m+1=0 có nghiệm khi m nhận giá trị

Phương trình \({{\left( \frac{1}{9} \right)}^{x}}-m.{{\left( \frac{1}{3} \right)}^{x}}+2m+1=0\) có nghiệm khi m nhận giá trị:

A. $m<-\frac{1}{2}$

B. $-\frac{1}{2}<m<4-2\sqrt{5}$

C. $m\ge 4+2\sqrt{5}$        

D. $m<-\frac{1}{2}\vee m\ge 4+2\sqrt{5}$

Hướng dẫn giải:

Đáp án D.

Ta có phương trình \({{\left( \frac{1}{9} \right)}^{x}}-m.{{\left( \frac{1}{3} \right)}^{x}}+2m+1=0\).

Đặt $t={{\left( \frac{1}{3} \right)}^{x}},t>0$ phương trình trở thành: ${{t}^{2}}-m.t+2m+1=0$.

Phương trình có nghiệm $\Leftrightarrow $ phương trình có nghiệm dương.

Do t = 2 không là nghiệm của phương trình nên $\Leftrightarrow m=\frac{{{t}^{2}}+1}{t-2}=f(t)$

${f}'(t)=\frac{{{t}^{2}}-4t-1}{{{(t-2)}^{2}}}$, ${f}'(t)=0\Leftrightarrow \frac{{{t}^{2}}-4t-1}{{{(t-2)}^{2}}}=0$

$\Leftrightarrow {{t}^{2}}-4t-1=0\Leftrightarrow \left[ \begin{align}& t=2-\sqrt{5}\text{ (loại)} \\& t=2+\sqrt{5}\text{ (nhận)} \\\end{align} \right.$

Bảng biến thiên:

Từ bảng biến thiên ta thấy, phương trình có nghiệm khi $m<-\frac{1}{2}\vee m\ge 4+2\sqrt{5}$.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *