Phương trình \({{\left( \frac{1}{9} \right)}^{x}}-m.{{\left( \frac{1}{3} \right)}^{x}}+2m+1=0\) có nghiệm khi m nhận giá trị:
A. $m<-\frac{1}{2}$
B. $-\frac{1}{2}<m<4-2\sqrt{5}$
C. $m\ge 4+2\sqrt{5}$
D. $m<-\frac{1}{2}\vee m\ge 4+2\sqrt{5}$
Hướng dẫn giải:
Đáp án D.
Ta có phương trình \({{\left( \frac{1}{9} \right)}^{x}}-m.{{\left( \frac{1}{3} \right)}^{x}}+2m+1=0\).
Đặt $t={{\left( \frac{1}{3} \right)}^{x}},t>0$ phương trình trở thành: ${{t}^{2}}-m.t+2m+1=0$.
Phương trình có nghiệm $\Leftrightarrow $ phương trình có nghiệm dương.
Do t = 2 không là nghiệm của phương trình nên $\Leftrightarrow m=\frac{{{t}^{2}}+1}{t-2}=f(t)$
${f}'(t)=\frac{{{t}^{2}}-4t-1}{{{(t-2)}^{2}}}$, ${f}'(t)=0\Leftrightarrow \frac{{{t}^{2}}-4t-1}{{{(t-2)}^{2}}}=0$
$\Leftrightarrow {{t}^{2}}-4t-1=0\Leftrightarrow \left[ \begin{align}& t=2-\sqrt{5}\text{ (loại)} \\& t=2+\sqrt{5}\text{ (nhận)} \\\end{align} \right.$
Bảng biến thiên:
Từ bảng biến thiên ta thấy, phương trình có nghiệm khi $m<-\frac{1}{2}\vee m\ge 4+2\sqrt{5}$.
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!