Nếu hàm số y = f(x) liên tục và đồng biến trên khoảng (−2;0) và nghịch biến trên khoảng (1;4) thì hàm số y=−f(x+3)−2 nghịch biến trên khoảng nào

Ví dụ 8. Nếu hàm số y = f(x) liên tục và đồng biến trên khoảng  \( \left( -2;0 \right) \) và nghịch biến trên khoảng  \( \left( 1;4 \right) \) thì hàm số  \( y=-f\left( x+3 \right)-2 \) nghịch biến trên khoảng nào?

A.  \( \left( -2;0 \right) \)

B.  \( \left( -2;1 \right) \)

C.  \( \left( 1;3 \right)  \)       

D.  \( \left( -5;-3 \right) \)

Hướng dẫn giải:

 Đáp án D.

Chúng ta sẽ suy luận theo sơ đồ sau:  \( f(x)\to f(x+3)\to -f(x+3)\to -f(x+3)-2 \)

+ Từ  \( y=f(x)\Rightarrow y=f(x+3) \) đồng biến trên  \( (-5;-3) \) và nghịch biến trên  \( (-2;1) \).

+ Từ  \( y=f(x+3)\Rightarrow y=-f(x+3) \) đồng biến trên \( (-2;1)  \)và đồng biến trên  \( (-5;-3) \).

+ Từ  \( y=-f(x+3)\Rightarrow y=-f(x+3)-2 \) đồng biến trên \( (-2;1) \) và đồng biến trên  \( (-5;-3) \).

Vậy  \( y=-f(x+3)-2 \) đồng biến trên  \( (-2;1) \) và đồng biến trên  \( (-5;-3) \).

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *