Một khối trụ có bán kính đáy r=2a. Gọi O, O’ lần lượt là tâm đường tròn đáy. Một mặt phẳng song song với trục và cách trục

Một khối trụ có bán kính đáy \( r=2a \). Gọi O, O’ lần lượt là tâm đường tròn đáy. Một mặt phẳng song song với trục và cách trục  \( \frac{a\sqrt{15}}{2} \), cắt đường tròn (O’) tại hai điểm A, B. Biết thể tích của khối tứ diện OO’AB bằng  \( \frac{{{a}^{3}}\sqrt{15}}{4} \). Độ dài đường cao của hình trụ bằng

A. a.

B. 6a.

C. 3a.                                

D. 2a.

Hướng dẫn giải:

Chọn C

Vẽ đường sinh AC, khi đó mặt phẳng (ABC) song song với OO’ và cách OO’ một khoảng  \( \frac{a\sqrt{15}}{2} \).

Gọi I là trung điểm AB, ta có  \( d\left( OO’,(ABC) \right)=d\left( O’,(ABC) \right)=O’I=\frac{a\sqrt{15}}{2} \).

Bán kính  \( O’A=2a \) suy ra  \( BA=2IA=2\sqrt{O'{{A}^{2}}-O'{{I}^{2}}}=2\sqrt{4{{a}^{2}}-\frac{15{{a}^{2}}}{4}}=a \).

Thể tích tứ diện OO’AB bằng  \( \frac{{{a}^{3}}\sqrt{15}}{4} \) nên ta có:

 \( \frac{1}{6}.OO’.IO’.AB=\frac{{{a}^{3}}\sqrt{15}}{4}\Leftrightarrow \frac{1}{6}.OO’.\frac{a\sqrt{15}}{2}.a=\frac{{{a}^{3}}\sqrt{15}}{4}\Leftrightarrow OO’=3a \).

Vậy hình trụ có chiều cao  \( OO’=3a \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *