Hàm số y = f(x) được gọi là đồng biến trên miền D khi và chỉ khi ∀x1,x2∈D và x1<x2 thì f(x1)<f(x2)

Cho các phát biểu sau:

I. Hàm số y = f(x) được gọi là đồng biến trên miền D khi và chỉ khi  \( \forall {{x}_{1}},{{x}_{2}}\in D \) và  \( {{x}_{1}}<{{x}_{2}} \) thì  \( f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right) \).

II. Hàm số y = f(x) được gọi là nghịch biến trên miền D khi và chỉ khi  \( \forall {{x}_{1}},{{x}_{2}}\in D \) và  \( {{x}_{1}}<{{x}_{2}} \) thì  \( f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right) \).

III. Nếu  \( f’\left( x \right)>0,\text{ }\forall x\in \left( a;b \right) \) thì hàm số y = f(x) đồng biến trên khoảng (a;b)

IV. Hàm số y = f(x) đồng biến trên khoảng (a;b) khi và chỉ khi  \( f’\left( x \right)\ge 0,\text{ }\forall x\in \left( a;b \right) \).

Có bao nhiêu phát biểu đúng?

A. 1

B. 2

C. 3                                   

D. 4

Hướng dẫn giải:

 Đáp án B.

Phát biểu II sai, muốn đúng thì sửa lại “nghịch biến” thành “đồng biến” (giống phát biểu I) hoặc thay “ \( f({{x}_{1}})<f({{x}_{2}}) \)” thành “ \( f({{x}_{1}})>f({{x}_{2}}) \)”.

Phát biểu IV sai, muốn đúng cần bổ sung thêm “ \( {f}'(x)\ge 0,\forall x\in (a;b) \) và  \( {f}'(x)=0 \) xảy ra tại hữu hạn điểm thuộc (a;b)”. Nghĩa là có 2 phát biểu sai và 2 phát biểu đúng.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *