Gọi z=a+bi (a,b∈R) là số phức thỏa mãn điều kiện |z−1−2i|+|z+2−3i|=√10 và có môđun nhỏ nhất. Tính S=7a+b

Gọi \( z=a+bi\text{ }(a,b\in \mathbb{R}) \) là số phức thỏa mãn điều kiện  \( \left| z-1-2i \right|+\left| z+2-3i \right|=\sqrt{10} \) và có môđun nhỏ nhất. Tính  \( S=7a+b \)?

A. 7

B. 0

C. 5                                   

D. -12

Hướng dẫn giải:

Chọn A

Gọi M(a;b) là điểm biểu diễn số phức  \( z=a+bi \).

A(1;2) là điểm biểu diễn số phức  \( (1+2i) \).

B(-2;3) là điểm biểu diễn số phức  \( (-2+3i),\text{ }AB=\sqrt{10} \).

\( \left| z-1-2i \right|+\left| z+2-3i \right|=\sqrt{10} \) trở thành  \( MA+MB=AB \)  \( \Leftrightarrow M,A,B \) thẳng hàng và M ở giữa A và B.

Gọi H là điểm chiếu của O lên AB, phương trình  \( (AB):x+3y-7=0 \),  \( (OH):3x-y=0 \).

Tọa độ điểm  \( H\left( \frac{7}{10};\frac{21}{10} \right) \). Có  \( \overrightarrow{AH}=\left( -\frac{3}{10};\frac{1}{10} \right),\text{ }\overrightarrow{BH}=\left( \frac{27}{10};-\frac{9}{10} \right) \) và  \( \overrightarrow{BH}=-9\overrightarrow{AH} \) nên H thuộc đoạn AB.

\( {{\left| z \right|}_{\min }}\Leftrightarrow O{{M}_{\min }} \), mà  \( M\in AB\Leftrightarrow M\equiv H\left( \frac{7}{10};\frac{21}{10} \right) \).

Lúc đó  \( S=7a+b=\frac{49}{10}+\frac{21}{10}=7 \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Fanpage Trung Tâm Luyện Thi Đại Học Nhân Tài Việt

Fanpage Trung Tâm Gia Sư Dạy Kèm Nhân Tài Việt

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *