Gọi z=a+bi (a,b∈R) là số phức thỏa mãn điều kiện |z−1−2i|+|z+2−3i|=√10 và có môđun nhỏ nhất. Tính S=7a+b

Gọi \( z=a+bi\text{ }(a,b\in \mathbb{R}) \) là số phức thỏa mãn điều kiện  \( \left| z-1-2i \right|+\left| z+2-3i \right|=\sqrt{10} \) và có môđun nhỏ nhất. Tính  \( S=7a+b \)?

A. 7

B. 0

C. 5                                   

D. -12

Hướng dẫn giải:

Chọn A

Gọi M(a;b) là điểm biểu diễn số phức  \( z=a+bi \).

A(1;2) là điểm biểu diễn số phức  \( (1+2i) \).

B(-2;3) là điểm biểu diễn số phức  \( (-2+3i),\text{ }AB=\sqrt{10} \).

\( \left| z-1-2i \right|+\left| z+2-3i \right|=\sqrt{10} \) trở thành  \( MA+MB=AB \)  \( \Leftrightarrow M,A,B \) thẳng hàng và M ở giữa A và B.

Gọi H là điểm chiếu của O lên AB, phương trình  \( (AB):x+3y-7=0 \),  \( (OH):3x-y=0 \).

Tọa độ điểm  \( H\left( \frac{7}{10};\frac{21}{10} \right) \). Có  \( \overrightarrow{AH}=\left( -\frac{3}{10};\frac{1}{10} \right),\text{ }\overrightarrow{BH}=\left( \frac{27}{10};-\frac{9}{10} \right) \) và  \( \overrightarrow{BH}=-9\overrightarrow{AH} \) nên H thuộc đoạn AB.

\( {{\left| z \right|}_{\min }}\Leftrightarrow O{{M}_{\min }} \), mà  \( M\in AB\Leftrightarrow M\equiv H\left( \frac{7}{10};\frac{21}{10} \right) \).

Lúc đó  \( S=7a+b=\frac{49}{10}+\frac{21}{10}=7 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *