Gọi S là tập hợp các số phức z thỏa mãn |z−1|=√34 và |z+1+mi|=|z+m+2i|

Gọi S là tập hợp các số phức z thỏa mãn \( \left| z-1 \right|=\sqrt{34} \) và  \( \left| z+1+mi \right|=\left| z+m+2i \right| \), trong đó  \( m\in \mathbb{R} \). Gọi  \( {{z}_{1}},{{z}_{2}} \) là hai số phức thuộc S sao cho  \( \left| {{z}_{1}}-{{z}_{2}} \right| \) lớn nhất, khi đó giá trị của  \( \left| {{z}_{1}}+{{z}_{2}} \right| \) bằng

A. 2

B. 10                                 

C.  \( \sqrt{2} \)                

D.  \( \sqrt{130} \)

Hướng dẫn giải:

Đáp án A.

Đặt  \( z=x+yi\text{ }(x,y\in \mathbb{R}) \).

Khi đó:  \( \left| z-1 \right|=\sqrt{34}\Leftrightarrow {{(x-1)}^{2}}+{{y}^{2}}=34 \);

 \( \left| z+1+mi \right|=\left| z+m+2i \right|\Leftrightarrow 2(m-1)x+2(2-m)y+3=0 \).

Do đó, tập hợp các điểm M biểu diễn số phức z là giao điểm của đường tròn  \( (C):{{(x-1)}^{2}}+{{y}^{2}}=34 \) và đường thẳng  \( d:2(m-1)x+2(2-m)y+3=0 \).

Gọi A, B là hai điểm biểu diễn z1 và z2. Suy ra:  \( (C)\cap d=\{A,B\} \).

Mặt khác,  \( \left| {{z}_{1}}-{{z}_{2}} \right|=AB\le 2R=2\sqrt{34} \)

Do đó  \( \max \left| {{z}_{1}}-{{z}_{2}} \right|=2\sqrt{34}\Leftrightarrow AB=2R\Leftrightarrow I(1;0)\in d  \).

Từ đó, ta có:  \( m=-\frac{1}{2} \) nên  \( d:3x-5y-3=0\Rightarrow \left[ \begin{align}  & {{z}_{1}}=6+3i \\  & {{z}_{2}}=-4-3i \\ \end{align} \right. \).

Vậy,  \( \left| {{z}_{1}}+{{z}_{2}} \right|=2 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *