Gọi S là hình phẳng giới hạn bởi đồ thị hàm số (H):y=(x−1)/(x+1) và các trục tọa độ. Khi đó giá trị của S bằng

Gọi S là hình phẳng giới hạn bởi đồ thị hàm số \( (H):y=\frac{x-1}{x+1} \) và các trục tọa độ. Khi đó giá trị của S bằng

A. \( S=\ln 2+1 \)

B.  \( S=2\ln 2+1 \)         

C.  \( S=\ln 2-1 \)             

D.  \( S=2\ln 2-1 \)

Hướng dẫn giải:

Đáp án D.

Phương trình trục Ox và Oy lần lượt là  \( y=0 \) và  \( x=0 \).

Phương trình hoành độ giao điểm của hàm số (H) và trục Ox:  \( \frac{x-1}{x+1}=0\Leftrightarrow x=1 \).

Ta có:  \( S=\int\limits_{0}^{1}{\left| \frac{x-1}{x+1} \right|dx} \).

Vì  \( \frac{x-1}{x+1}\le 0,\forall x\in \left[ 0;1 \right] \) nên diện tích cần tìm là:

\(S=-\int\limits_{0}^{1}{\frac{x-1}{x+1}dx}=\int\limits_{0}^{1}{\left( -1+\frac{2}{x+1} \right)dx}=\left. \left( -x+2\ln \left| x+1 \right| \right) \right|_{0}^{1}=2\ln 2-1\).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *