Giải phương trình: \( \frac{{{\sin }^{4}}2x+{{\cos }^{4}}2x}{\tan \left( \frac{\pi }{4}-x \right)\tan \left( \frac{\pi }{4}+\pi \right)}={{\cos }^{4}}4x \) (*)
Hướng dẫn giải:
Điều kiện: \(\left\{ \begin{align} & \sin \left( \frac{\pi }{4}-x \right)\cos x\left( \frac{\pi }{4}-x \right)\ne 0 \\ & \sin \left( \frac{\pi }{4}+x \right)\cos x\left( \frac{\pi }{4}+x \right)\ne 0 \\ \end{align} \right.\)\(\Leftrightarrow \left\{ \begin{align} & \sin \left( \frac{\pi }{2}-2x \right)\ne 0 \\ & \sin \left( \frac{\pi }{2}+2x \right)\ne 0 \\ \end{align} \right.\Leftrightarrow \cos 2x\ne 0\Leftrightarrow \sin 2x\ne \pm 1\).
Do: \( \tan \left( \frac{\pi }{4}-x \right)\tan \left( \frac{\pi }{4}+x \right)=\frac{1-\tan x}{1+\tan x}.\frac{1+\tan x}{1-\tan x}=1 \).
Khi \( \cos 2x\ne 0 \) thì:
(*) \( \Leftrightarrow {{\sin }^{4}}2x+{{\cos }^{4}}2x={{\cos }^{4}}4x\Leftrightarrow 1-2{{\sin }^{2}}2xco{{s}^{2}}2x={{\cos }^{4}}4x \)
\( \Leftrightarrow 1-\frac{1}{2}si{{n}^{2}}4x={{\cos }^{4}}4x\Leftrightarrow 1-\frac{1}{2}(1-{{\cos }^{2}}4x)={{\cos }^{4}}4x \)
\( \Leftrightarrow 2{{\cos }^{4}}4x-{{\cos }^{2}}4x-1=0\Leftrightarrow \left[ \begin{align} & {{\cos }^{2}}4x=1\text{ }(n) \\ & {{\cos }^{2}}4x=-\frac{1}{2}\text{ }(\ell ) \\ \end{align} \right.\Leftrightarrow 1-{{\sin }^{2}}4x=1 \)
\( \Leftrightarrow \sin 4x=0\Leftrightarrow 2\sin 2x\cos 2x=0\Leftrightarrow \sin 2x=0\text{ }(do\text{ }\cos 2x\ne 0) \)
\( \Leftrightarrow 2x=k\pi \Leftrightarrow x=\frac{k\pi }{2},\text{ }k\in \mathbb{Z} \).
Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Toán - Lý - Hóa từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!