Giải phương trình: sin^3xcos3x+cos^3xsin3x=sin^34x

Giải phương trình: \( {{\sin }^{3}}x\cos 3x+{{\cos }^{3}}xsin3x=si{{n}^{3}}4x \)   (*)

Hướng dẫn giải:

Ta có: (*)\(\Leftrightarrow {{\sin }^{3}}x\left( 4{{\cos }^{3}}x-3\cos x \right)+{{\cos }^{3}}x\left( 3\sin x-4{{\sin }^{3}}x \right)=si{{n}^{3}}4x\)

 \( \Leftrightarrow 4{{\sin }^{3}}xco{{s}^{3}}x-3{{\sin }^{3}}xcosx+3sinxco{{s}^{3}}x-4si{{n}^{3}}xco{{s}^{3}}x=si{{n}^{3}}4x \)

\( \Leftrightarrow 3\sin x\cos x\left( {{\cos }^{2}}x-si{{n}^{2}}x \right)={{\sin }^{3}}4x\Leftrightarrow \frac{3}{2}\sin 2x\cos 2x={{\sin }^{3}}4x \)

 \( \Leftrightarrow \frac{3}{4}\sin 4x={{\sin }^{3}}4x\Leftrightarrow 3\sin 4x-4{{\sin }^{3}}4x=0\Leftrightarrow \sin 12x=0 \)

 \( \Leftrightarrow 12x=k\pi \Leftrightarrow x=\frac{k\pi }{12},\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *