Giải phương trình: \( \cot x-\tan x+4\sin 2x=\frac{2}{\sin 2x} \) (*)
Hướng dẫn giải:
Điều kiện: \( \sin 2x\ne 0 \)
Đặt \( t=\tan x \) thì: \( \sin 2x=\frac{2t}{1+{{t}^{2}}} \) do \( \sin 2x\ne 0 \) nên \( t\ne 0 \).
(*) thành: \( \frac{1}{t}-t+\frac{8t}{1+{{t}^{2}}}=\frac{1+{{t}^{2}}}{t}=\frac{1}{t}+t\Leftrightarrow \frac{8t}{1+{{t}^{2}}}=2t \)
\( \Leftrightarrow \frac{8t}{1+{{t}^{2}}}=2t\Leftrightarrow \frac{4}{1+{{t}^{2}}}=1\text{ }(do\text{ }t\ne 0) \)
\( \Leftrightarrow {{t}^{2}}=3\Leftrightarrow t=\pm \sqrt{3}\text{ }(\text{nhận }do\text{ }t\ne 0) \)
\( \Rightarrow \tan x=\pm \sqrt{3}=\tan \left( \pm \frac{\pi }{3} \right)\Leftrightarrow x=\pm \frac{\pi }{3}+k\pi ,\text{ }k\in \mathbb{Z} \).
Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Toán - Lý - Hóa từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
Các bài toán liên quan
Các bài toán cùng chủ đề!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Error: View 4055aa7517 may not exist
No comment yet, add your voice below!