Giải phương trình: cosx(2sinx+3√2)−2cos^2x−1/1+sin2x=1

Giải phương trình: \( \frac{\cos x\left( 2\sin x+3\sqrt{2} \right)-2{{\cos }^{2}}x-1}{1+\sin 2x}=1 \)  (*)

Hướng dẫn giải:

Điều kiện:  \( \sin 2x\ne -1\Leftrightarrow x\ne -\frac{\pi }{4}+m\pi  \).

Lúc đó: (*) \( \Leftrightarrow 2\sin x\cos x+3\sqrt{2}\cos x-2{{\cos }^{2}}x-1=1+\sin 2x \)

 \( \Leftrightarrow 2{{\cos }^{2}}x-3\sqrt{2}\cos x+2=0\Leftrightarrow \left[ \begin{align} & \cos x=\frac{\sqrt{2}}{2}\text{ }(n) \\ & \cos x=\sqrt{2}\text{ }(\ell ) \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{4}+k2\pi \text{ }(n) \\  & x=-\frac{\pi }{4}+k2\pi \text{ }(\ell ) \\ \end{align} \right.\Leftrightarrow x=\frac{\pi }{4}+k2\pi  \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *