Giải phương trình: cos10x+2cos^24x+6cos3x.cosx=cosx+8cosx.cos^33x

Giải phương trình: \( \cos 10x+2{{\cos }^{2}}4x+6cos3x.cosx=\cos x+8\cos x.{{\cos }^{3}}3x \)  (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow \cos 10x+(1+\cos 8x)=\cos x+8\cos x.{{\cos }^{3}}3x-6\cos 3x.\cos x \)

 \( \Leftrightarrow (\cos 10x+\cos 8x)+1=\cos x+2\cos x(4{{\cos }^{3}}3x-3\cos 3x) \)

 \( \Leftrightarrow 2\cos 9x\cos x+1=\cos x+2\cos x\cos 9x\Leftrightarrow \cos x=1\Leftrightarrow x=k2\pi ,\text{ }k\in \mathbb{Z} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 4055aa7517 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *