Giải hệ phương trình: \( \left\{ \begin{align} & \frac{2}{\left| x-2 \right|}+\frac{1}{y}=2 \\ & \frac{6}{\left| x-2 \right|}-\frac{2}{y}=1 \\ \end{align} \right. \).
Hướng dẫn giải:
Điều kiện: \( x\ne 2;\text{ }y\ne 0 \).
\( \left\{ \begin{align} & \frac{2}{\left| x-2 \right|}+\frac{1}{y}=2 \\ & \frac{6}{\left| x-2 \right|}-\frac{2}{y}=1 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & \frac{6}{\left| x-2 \right|}+\frac{3}{y}=6 \\ & \frac{6}{\left| x-2 \right|}-\frac{2}{y}=1 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & \frac{5}{y}=5 \\ & \frac{2}{\left| x-2 \right|}+\frac{1}{y}=2 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & y=1\text{ }(n) \\ & \frac{2}{\left| x-2 \right|}+\frac{1}{1}=2 \\ \end{align} \right. \)
\( \Leftrightarrow \left\{ \begin{align} & y=1 \\ & \left| x-2 \right|=2 \\ \end{align} \right. \) \( \Leftrightarrow \left[\begin{array}{l} \begin{cases} y=1 \\ x-2=2 \end{cases} \\ \begin{cases} y=1 \\ x-2=-2 \end{cases} \\\end{array}\right. \) \( \Leftrightarrow \left[\begin{array}{l} \begin{cases} y=1 \\ x=4 \end{cases} \\ \begin{cases} y=1 \\ x=0 \end{cases} \\\end{array}\right. \).
Vậy hệ phương trình ban đầu có nghiệm là \( \left( x;y \right)=\left\{ (4;1),(0;1) \right\} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!