Giả sử z1, z2 là hai trong các số phức thỏa mãn (z−6)(8+z¯i)là số thực. Biết rằng |z1−z2|=4, giá trị nhỏ nhất của |z1+3z2| bằng

Giả sử z1, z2 là hai trong các số phức thỏa mãn \( (z-6)(8+\bar{z}i) \)là số thực. Biết rằng  \( \left| {{z}_{1}}-{{z}_{2}} \right|=4 \), giá trị nhỏ nhất của  \( \left| {{z}_{1}}+3{{z}_{2}} \right| \) bằng

A. \( 5-\sqrt{21} \)

B.  \( 20-4\sqrt{21} \)      

C.  \( 20-4\sqrt{22} \)      

D.  \( 5-\sqrt{22} \)

Hướng dẫn giải:

Chọn C

Giả sử  \( z=x+yi,\text{ }x,y\in \mathbb{R} \). Gọi A, B lần lượt là điểm biểu diễn cho số phức z1, z­2. Suy ra  \( AB=\left| {{z}_{1}}-{{z}_{2}} \right|=4 \).

+ Ta có:  \( (z-6)(8-\bar{z}i)=\left[ (x-6)+yi \right]\left[ (8-y)-xi \right]=(8x+6y-48)-({{x}^{2}}+{{y}^{2}}-6x-8y)I \). Theo giả thiết  \( (z-6)(8-\bar{z}i) \) là số thực nên ta suy ra  \( {{x}^{2}}+{{y}^{2}}-6x-8y=0 \). Tức là các điểm A, B thuộc đường tròn (C) tâm I(3;4), bán kính R = 5.

+ Xét điểm M thuộc đoạn AB thỏa  \( \overrightarrow{MA}+3\overrightarrow{MB}=\vec{0}\Leftrightarrow \overrightarrow{OA}+3\overrightarrow{OB}=4\overrightarrow{OM} \). Gọi H là trung điểm AB. Ta tính được  \( H{{I}^{2}}={{R}^{2}}-H{{B}^{2}}=21;\text{ }IM=\sqrt{H{{I}^{2}}+H{{M}^{2}}}=\sqrt{22} \), suy ra điểm M thuộc đường tròn (C’) tâm I(3;4), bán kính  \( r=\sqrt{22} \).

+ Ta có:  \( \left| {{z}_{1}}+3{{z}_{2}} \right|=\left| \overrightarrow{OA}+3\overrightarrow{OB} \right|=\left| 4\overrightarrow{OM} \right|=4OM \), do đó  \( \left| {{z}_{1}}+3{{z}_{2}} \right| \) nhỏ nhất khi OM nhỏ nhất.

Ta có  \( O{{M}_{\min }}=O{{M}_{0}}=\left| OI-r \right|=5-\sqrt{22} \).

Vậy  \( {{\left| {{z}_{1}}+3{{z}_{2}} \right|}_{\min }}=4O{{M}_{0}}=20-4\sqrt{22} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *