Đồ thị hàm số y=(2x−1)/(1−x) (C) và đường thẳng d:y=x+m. Tìm tất cả các giá trị của tham số m để đường thẳng d cắt đồ thị (C) tại 2 điểm phân biệt

Đồ thị hàm số \( y=\frac{2x-1}{1-x} \) (C) và đường thẳng  \( d:y=x+m  \). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt đồ thị (C) tại 2 điểm phân biệt

A. \( m>-1 \)

B.  \( -5<m<-1 \)             

C.  \( m<-5 \)                   

D.  \( m<-5\vee m>-1 \)

Hướng dẫn giải:

Đáp án D.

Hàm số  \( y=\frac{2x-1}{1-x} \) có tập xác định  \( D=\mathbb{R}\backslash \{1\} \).

Lập phương trình hoành độ giao điểm:  \( \frac{2x-1}{1-x}=x+m  \)  \( \left( x\ne 1 \right) \).

 \( \Leftrightarrow \left\{ \begin{align}  & 2x-1=x+m-{{x}^{2}}-mx \\  & x\ne 1 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & {{x}^{2}}+\left( m+1 \right)x-\left( m+1 \right)=0\text{ }(*) \\  & x\ne 1 \\ \end{align} \right. \)

Đường thẳng d cắt đồ thị (C) tại 2 điểm phân biệt

 \( \Leftrightarrow  \)phương trình (*) có 2 nghiệm phân biệt  \( x\ne 1 \)

\(\Leftrightarrow \left\{ \begin{align}  & \Delta >0 \\  & {{1}^{2}}+(m+1)-(m+1)\ne 0 \\ \end{align} \right.\)\(\Leftrightarrow \left\{ \begin{align}  & {{m}^{2}}+6m+5>0 \\  & 1\ne 0\text{ }(t/m) \\ \end{align} \right.\Leftrightarrow m<-5\vee m>-1\)

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *