Diện tích hình phẳng giới hạn bởi các đường y=x^2+x−1 và y=x^4+x−1 là

Diện tích hình phẳng giới hạn bởi các đường \( y={{x}^{2}}+x-1 \) và \( y={{x}^{4}}+x-1 \) là:

A. \( \frac{8}{15} \)

B.  \( \frac{7}{15} \)                 

C.  \( \frac{2}{5} \)          

D.  \( \frac{4}{15} \)

Hướng dẫn giải:

Đáp án D.

Phương trình hoành độ giao điểm của  \( y={{x}^{2}}+x-1 \)  \( và y={{x}^{4}}+x-1 \) là:

 \( {{x}^{2}}+x-1={{x}^{4}}+x-1\Leftrightarrow {{x}^{2}}-{{x}^{4}}\Leftrightarrow \left[ \begin{align} & x=0 \\  & x=1 \\  & x=-1 \\ \end{align} \right. \)

Diện tích hình phẳng giới cần tìm là:  \( S=\int\limits_{-1}^{1}{\left| {{x}^{2}}-{{x}^{4}} \right|dx}=\int\limits_{-1}^{0}{\left| {{x}^{2}}-{{x}^{4}} \right|dx}+\int\limits_{0}^{1}{\left| {{x}^{2}}-{{x}^{4}} \right|dx} \)

 \( =\left| \int\limits_{-1}^{0}{({{x}^{2}}-{{x}^{4}})dx} \right|+\left| \int\limits_{0}^{1}{({{x}^{2}}-{{x}^{4}})dx} \right|=\left| \left. \left( \frac{{{x}^{3}}}{3}-\frac{{{x}^{5}}}{5} \right) \right|_{-1}^{0} \right|+\left| \left. \left( \frac{{{x}^{3}}}{3}-\frac{{{x}^{5}}}{5} \right) \right|_{0}^{-1} \right|=\frac{2}{15}+\frac{2}{15}=\frac{4}{15} \).

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *