Có tất cả bao nhiêu giá trị nguyên thuộc đoạn [−2020;2020] của tham số m để đường thẳng y=x+m cắt đồ thị hàm số y=(2x−3)/(x−1) tại hai điểm phân biệt

Có tất cả bao nhiêu giá trị nguyên thuộc đoạn \( \left[ -2020;2020 \right] \) của tham số m để đường thẳng  \( y=x+m  \) cắt đồ thị hàm số  \( y=\frac{2x-3}{x-1} \) tại hai điểm phân biệt?

A. 4036

B. 4040                            

C. 4038                            

D. 4034

Hướng dẫn giải:

Đáp án A.

Ta có phương trình hoành độ giao điểm của đường thẳng  \( y=x+m  \) và đường cong  \( y=\frac{2x-3}{x-1} \)

 \( x+m=\frac{2x-3}{x-1}\Leftrightarrow \left( x+m \right)\left( x-1 \right)=2x-3 \left( x\ne 1 \right) \)

 \( \Leftrightarrow {{x}^{2}}+mx-x-m=2x-3 \) \( \Leftrightarrow {{x}^{2}}+\left( m-3 \right)x-m+3=0 \) (*)

Ta có:

 \( \Delta ={{\left( m-3 \right)}^{2}}-4\left( -m+3 \right) \) \( ={{m}^{2}}-6m+9+4m-12={{m}^{2}}-2m-3 \)

Để đường thẳng  \( y=x+m  \) cắt đồ thị hàm số  \( y=\frac{2x-3}{x-1} \) tại hai điểm phân biệt thì phương trình (*) có hai nghiệm phân biệt khác 1.

 \( \Leftrightarrow \left\{ \begin{align}  & \Delta >0 \\  & {{1}^{2}}+(m-3).1-m+3\ne 0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & {{m}^{2}}-2m-3>0 \\  & 1\ne 0 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & m<-1 \\  & m>3 \\ \end{align} \right. \).

Theo giả thiết:  \( -2020\le m\le 2020 \) và  \( \left[ \begin{align}  & m<-1 \\  & m>3 \\ \end{align} \right. \) nên \( \left[ \begin{align}  & -2020\le m<-1 \\  & 3<m\le 2020 \\ \end{align} \right. \).

Vì  \( m\in \mathbb{Z} \) và  \( -2020\le m<-1 \), suy ra có:  \( -2-\left( -2020 \right)+1=2019 \) giá trị nguyên m.

Vì  \( m\in \mathbb{Z} \) và  \( 3<m\le 2020 \), suy ra có:  \( 2020-4+1=2017 \) giá trị nguyên m.

Tóm lại có tất cả  \( 2019 + 2017 = 4036 \) giá trị nguyên của tham số m.

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *