Có tất cả bao nhiêu giá trị của tham số m để bất phương trình log2(x^2+mx+m+2)≥log2(x^2+2) nghiệm đúng với ∀x∈R

Có tất cả bao nhiêu giá trị của tham số m để bất phương trình \( {{\log }_{2}}\left( {{x}^{2}}+mx+m+2 \right)\ge {{\log }_{2}}\left( {{x}^{2}}+2 \right) \) nghiệm đúng với  \( \forall x\in \mathbb{R} \).

A. 2

B. 4

C. 3                                   

D. 1

Hướng dẫn giải:

Đáp án D.

Ta thấy  \( {{x}^{2}}+2>0,\forall x\in \mathbb{R} \)

Do đó bất phương trình \({{\log }_{2}}\left( {{x}^{2}}+mx+m+2 \right)\ge {{\log }_{2}}\left( {{x}^{2}}+2 \right)\)

\(\Leftrightarrow {{x}^{2}}+mx+m+2\ge {{x}^{2}}+2\Leftrightarrow mx+m\ge 0\)

Bất phương trình  \( {{\log }_{2}}\left( {{x}^{2}}+mx+m+2 \right)\ge {{\log }_{2}}\left( {{x}^{2}}+2 \right) \) nghiệm đúng với  \( \forall x\in \mathbb{R} \) khi và chỉ khi  \( mx+m\ge 0,\forall x\in \mathbb{R}\Leftrightarrow m=0 \).

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *