Có một hình chóp tứ giác đều có cạnh đáy bằng 2a và cạnh bên tạo với mặt phẳng đáy một góc 45O. Thể tích của khối chóp đó là

Có một hình chóp tứ giác đều có cạnh đáy bằng 2a và cạnh bên tạo với mặt phẳng đáy một góc 45O. Thể tích của khối chóp đó là

A. \( \frac{4{{a}^{3}}\sqrt{2}}{3} \)

B.  \( \frac{{{a}^{3}}\sqrt{2}}{8} \)           

C.  \( \frac{{{a}^{3}}\sqrt{2}}{6} \)         

D.  \( 2\sqrt{2}{{a}^{3}} \)

Hướng dẫn giải:

Đáp án A.

Dựng hình chóp tứ giác đều S.ABCD thỏa mãn các điều kiện đề bài với O = AC  \( \cap  \) BD.

Theo giả thiết ta có: AB = 2a, SA tạo với mặt phẳng (ABCD) một góc 45O suy ra  \( \widehat{SAO}={{45}^{0}} \)

ABCD là hình vuông cạnh 2a nên tính được  \( AC=2\sqrt{2}a\Rightarrow OA=a\sqrt{2} \)

Tam giác SOA vuông cân tại O vì có SO  \( \bot  \) OA,  \( \widehat{SAO}={{45}^{0}} \) suy ra  \( SO=OA=a\sqrt{2} \).

Vậy thể tích khối chóp là  \( V=\frac{1}{3}{{S}_{ABCD}}.SO=\frac{1}{3}.4{{a}^{2}}.a\sqrt{2} \)

 

Các bài toán mới!

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *