Có bao nhiêu giá trị nguyên của tham số m để phương trình 8^x+3x.4^x+(3x^2+1).2^x=(m^3-1)x^3+(m-1)x có đúng hai nghiệm phân biệt thuộc (0;10)

Có bao nhiêu giá trị nguyên của tham số m để phương trình ${{8}^{x}}+3x{{.4}^{x}}+\left( 3{{x}^{2}}+1 \right){{.2}^{x}}=\left( {{m}^{3}}-1 \right){{x}^{3}}+\left( m-1 \right)x$ có đúng hai nghiệm phân biệt thuộc $\left( 0;10 \right)$.

A. 101

B. 100                              

C. 102                              

D. 103

Hướng dẫn giải:

Đáp án C.

${{8}^{x}}+3x{{.4}^{x}}+\left( 3{{x}^{2}}+1 \right){{.2}^{x}}=\left( {{m}^{3}}-1 \right){{x}^{3}}+\left( m-1 \right)x$ (1)

$\Leftrightarrow {{\left( {{2}^{x}}+x \right)}^{3}}+\left( {{2}^{x}}+x \right)={{\left( mx \right)}^{3}}+mx$ (2)

Xét hàm số $f(t)={{t}^{3}}+t$

Ta có: $t={{2}^{x}}+x$ mà $0< x <10\Rightarrow \left\{ \begin{align}& 1<{{2}^{x}}<1024 \\& 0< x < 10 \\\end{align} \right.$ $\Rightarrow 1<{{2}^{x}}+x<1034\Rightarrow 1<t<1034$

Xét hàm số $f(t)={{t}^{3}}+t,t\in \left( 1;1034 \right)$

\({f}'(t)=3{{t}^{2}}+1>0,\forall t\in \left( 1;1034 \right)\) hay $f(t)={{t}^{3}}+t$ đồng biến trên $t\in \left( 1;1034 \right)$.

Suy ra (2)$\Leftrightarrow {{2}^{x}}+x=mx\Leftrightarrow m=\frac{{{2}^{x}}+x}{x}=\frac{{{2}^{x}}}{x}+1$

Xét hàm số $g(x)=\frac{{{2}^{x}}}{x}+1,t\in \left( 0;10 \right)$

$\Rightarrow {g}'(x)=\frac{x{{.2}^{x}}\ln 2-{{2}^{x}}}{{{x}^{2}}}=\frac{{{2}^{x}}\left( x.\ln 2-1 \right)}{{{x}^{2}}}$

${g}'(x)=0\Leftrightarrow x=\frac{1}{\ln 2}={{\log }_{2}}e$

Bảng biến thiên:

Yêu cầu bài toán $\Leftrightarrow e\ln 2+1<m<104,4$

Mà $m\in \mathbb{Z}$ nên $m\in \left\{ 3;4;……;104 \right\}$

Có tất cả 102 số nguyên m thỏa mãn.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *