Có bao nhiêu giá trị nguyên của tham số m để phương trình ${{8}^{x}}+3x{{.4}^{x}}+\left( 3{{x}^{2}}+1 \right){{.2}^{x}}=\left( {{m}^{3}}-1 \right){{x}^{3}}+\left( m-1 \right)x$ có đúng hai nghiệm phân biệt thuộc $\left( 0;10 \right)$.
A. 101
B. 100
C. 102
D. 103
Hướng dẫn giải:
Đáp án C.
${{8}^{x}}+3x{{.4}^{x}}+\left( 3{{x}^{2}}+1 \right){{.2}^{x}}=\left( {{m}^{3}}-1 \right){{x}^{3}}+\left( m-1 \right)x$ (1)
$\Leftrightarrow {{\left( {{2}^{x}}+x \right)}^{3}}+\left( {{2}^{x}}+x \right)={{\left( mx \right)}^{3}}+mx$ (2)
Xét hàm số $f(t)={{t}^{3}}+t$
Ta có: $t={{2}^{x}}+x$ mà $0< x <10\Rightarrow \left\{ \begin{align}& 1<{{2}^{x}}<1024 \\& 0< x < 10 \\\end{align} \right.$ $\Rightarrow 1<{{2}^{x}}+x<1034\Rightarrow 1<t<1034$
Xét hàm số $f(t)={{t}^{3}}+t,t\in \left( 1;1034 \right)$
\({f}'(t)=3{{t}^{2}}+1>0,\forall t\in \left( 1;1034 \right)\) hay $f(t)={{t}^{3}}+t$ đồng biến trên $t\in \left( 1;1034 \right)$.
Suy ra (2)$\Leftrightarrow {{2}^{x}}+x=mx\Leftrightarrow m=\frac{{{2}^{x}}+x}{x}=\frac{{{2}^{x}}}{x}+1$
Xét hàm số $g(x)=\frac{{{2}^{x}}}{x}+1,t\in \left( 0;10 \right)$
$\Rightarrow {g}'(x)=\frac{x{{.2}^{x}}\ln 2-{{2}^{x}}}{{{x}^{2}}}=\frac{{{2}^{x}}\left( x.\ln 2-1 \right)}{{{x}^{2}}}$
${g}'(x)=0\Leftrightarrow x=\frac{1}{\ln 2}={{\log }_{2}}e$
Bảng biến thiên:
Yêu cầu bài toán $\Leftrightarrow e\ln 2+1<m<104,4$
Mà $m\in \mathbb{Z}$ nên $m\in \left\{ 3;4;……;104 \right\}$
Có tất cả 102 số nguyên m thỏa mãn.
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!