Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x^8+(m−2)x^5−(m^2−4)x^4+1 đạt cực tiểu tại x = 0

(THPTQG – 2018 – 101) Có bao nhiêu giá trị nguyên của tham số m để hàm số \( y={{x}^{8}}+\left( m-2 \right){{x}^{5}}-\left( {{m}^{2}}-4 \right){{x}^{4}}+1 \) đạt cực tiểu tại x = 0?

A. Vô nghiệm

B. 3

C. 5                                   

D. 4

Hướng dẫn giải:

Đáp án D.

Ta có: \({y}’=8{{x}^{7}}+5\left( m-2 \right){{x}^{4}}-4\left( {{m}^{2}}-4 \right){{x}^{3}}\)

\(\Rightarrow {y}’=0\Leftrightarrow {{x}^{3}}\left[ 8{{x}^{4}}+5\left( m-2 \right)-4\left( {{m}^{2}}-4 \right) \right]=0\)

\( \Leftrightarrow \left[ \begin{align}& x=0 \\ & g(x)=8{{x}^{4}}+5\left( m-2 \right)x-4\left( {{m}^{2}}-4 \right)=0 \\ \end{align} \right. \)

Xét hàm số  \( g(x)=8{{x}^{4}}+5\left( m-2 \right)x-4\left( {{m}^{2}}-4 \right)=0 \) có  \( {g}'(x)=32{{x}^{3}}+5\left( m-2 \right) \).

Ta thấy  \( {g}'(x)=0 \) có một nghiệm nên  \( g(x)=0 \) có tối đa hai nghiệm

+ Trường hợp 1: Nếu  \( g(x)=0 \) có nghiệm x = 0  \( \Rightarrow m=2 \) hoặc  \( m=-2 \).

– Với m = 2 thì x = 0 là nghiệm bội 4 của g(x).

Khi đó x = 0 là nghiệm bội 7 của y’ và y’ đổi dấu từ âm sang dương khi qua điểm x = 0 nên x = 0 là điểm cực tiểu của hàm số.

Vậy m = 2 thỏa yêu cầu bài toán.

– Với  \( m=-2 \) thì  \( g(x)=8{{x}^{4}}-20x=0\Leftrightarrow \left[ \begin{align} & x=0 \\  & x=\sqrt[3]{\frac{5}{2}} \\ \end{align} \right. \).

Bảng biến thiên:

 

Dựa vào bảng biến thiên x = 0 không là điểm cực tiểu của hàm số. Vậy  \( m=-2 \) không thỏa yêu cầu bài toán.

+ Trường hợp 2:  \( g(0)\ne 0\Leftrightarrow m\ne \pm 2 \).

Để hàm số đạt cực tiểu tại  \( x=0\Leftrightarrow g(0)>0 \)

 \( \Leftrightarrow {{m}^{2}}-4<0\Leftrightarrow -2<m<2 \)

Do  \( m\in \mathbb{Z} \) nên \(  m\in \left\{ -1;0;1 \right\} \).

Vậy cả hai trường hợp ta được 4 giá trị nguyên của m thỏa yêu cầu bài toán.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *