Cho hàm số y = f(x) liên tục trên đoạn \( \left[ -1;9 \right] \) có đồ thị là đường cong trong hình vẽ dưới đây
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \( {{16.3}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right]{{.4}^{f(x)}}\ge \left( {{m}^{2}}-3m \right){{.6}^{f(x)}} \) nghiệm đúng với mọi giá trị thuộc \( \left[ -1;9 \right] \)?
A. 32
B. 31
C. 5
D. 6
Hướng dẫn giải:
Đáp án B.
Dễ thấy \( -4\le f(x)\le 2,\forall x\in \left[ -1;9 \right] \) (1) nên \( -\left[ f(x)+4 \right].\left[ f(x)-2 \right]\ge 0,\forall x\in \left[ -1;9 \right] \)
Do đó: \( -\left[ {{f}^{2}}(x)+2f(x)-8 \right]\ge 0,\forall x\in \left[ -1;9 \right] \) (2).
Ta có: \( {{16.3}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right]{{.4}^{f(x)}}\ge \left( {{m}^{2}}-3m \right){{.6}^{f(x)}} \) nghiệm đúng với mọi \( x\in \left[ -1;9 \right] \).
\( \Leftrightarrow 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge {{m}^{2}}-3m \) nghiệm đúng với mọi \( x\in \left[ -1;9 \right] \).
\( \Leftrightarrow \alpha =\displaystyle \min_{[-1;9]}\left\{ 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}} \right\}\ge {{m}^{2}}-3m \) (3)
Từ (1) và (2), ta có: \( {{\left( \frac{1}{2} \right)}^{f(x)}}\ge {{\left( \frac{1}{2} \right)}^{2}} \) và \( -\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge 0,\forall x\in \left[ -1;9 \right] \).
Suy ra: \( \Leftrightarrow 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge 4,\forall x\in \left[ -1;9 \right] \).
Dầu “=” xảy ra khi và chỉ khi \( f(x)=2\Leftrightarrow x=-1\vee x=a\text{ }\left( 7<a<8 \right) \)
Do đó: \( \alpha =4 \) và \( (3)\Leftrightarrow 4\ge {{m}^{2}}-3m\Leftrightarrow -1\le m\le 4 \)
Vì \( m\in \mathbb{Z} \) nên \( m\in \left\{ -1;0;1;2;3;4 \right\} \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!