Có bao nhiêu giá trị nguyên của tham số m để bất phương trình 16.3^f(x)−[f^2(x)+2^f(x)−8].4^f(x)≥(m^2−3m).6^f(x) nghiệm đúng với mọi giá trị thuộc [−1;9]

Cho hàm số y = f(x) liên tục trên đoạn \( \left[ -1;9 \right] \) có đồ thị là đường cong trong hình vẽ dưới đây

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình  \( {{16.3}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right]{{.4}^{f(x)}}\ge \left( {{m}^{2}}-3m \right){{.6}^{f(x)}} \) nghiệm đúng với mọi giá trị thuộc  \( \left[ -1;9 \right] \)?

A. 32

B. 31

C. 5                                   

D. 6

Hướng dẫn giải:

Đáp án B.

Dễ thấy  \( -4\le f(x)\le 2,\forall x\in \left[ -1;9 \right] \) (1) nên  \( -\left[ f(x)+4 \right].\left[ f(x)-2 \right]\ge 0,\forall x\in \left[ -1;9 \right] \)

Do đó:  \( -\left[ {{f}^{2}}(x)+2f(x)-8 \right]\ge 0,\forall x\in \left[ -1;9 \right] \) (2).

Ta có:  \( {{16.3}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right]{{.4}^{f(x)}}\ge \left( {{m}^{2}}-3m \right){{.6}^{f(x)}} \) nghiệm đúng với mọi  \( x\in \left[ -1;9 \right] \).

 \( \Leftrightarrow 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge {{m}^{2}}-3m  \) nghiệm đúng với mọi  \( x\in \left[ -1;9 \right] \).

\( \Leftrightarrow \alpha =\displaystyle \min_{[-1;9]}\left\{ 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}} \right\}\ge {{m}^{2}}-3m  \) (3)

Từ (1) và (2), ta có:  \( {{\left( \frac{1}{2} \right)}^{f(x)}}\ge {{\left( \frac{1}{2} \right)}^{2}} \) và  \( -\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge 0,\forall x\in \left[ -1;9 \right] \).

Suy ra:  \( \Leftrightarrow 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge 4,\forall x\in \left[ -1;9 \right] \).

Dầu “=” xảy ra khi và chỉ khi  \( f(x)=2\Leftrightarrow x=-1\vee x=a\text{ }\left( 7<a<8 \right) \)

Do đó:  \( \alpha =4 \) và  \( (3)\Leftrightarrow 4\ge {{m}^{2}}-3m\Leftrightarrow -1\le m\le 4 \)

Vì  \( m\in \mathbb{Z} \) nên  \( m\in \left\{ -1;0;1;2;3;4 \right\} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *