Cho hàm số y = f(x) liên tục trên đoạn \( \left[ -1;9 \right] \) có đồ thị là đường cong trong hình vẽ dưới đây
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \( {{16.3}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right]{{.4}^{f(x)}}\ge \left( {{m}^{2}}-3m \right){{.6}^{f(x)}} \) nghiệm đúng với mọi giá trị thuộc \( \left[ -1;9 \right] \)?
A. 32
B. 31
C. 5
D. 6
Hướng dẫn giải:
Đáp án B.
Dễ thấy \( -4\le f(x)\le 2,\forall x\in \left[ -1;9 \right] \) (1) nên \( -\left[ f(x)+4 \right].\left[ f(x)-2 \right]\ge 0,\forall x\in \left[ -1;9 \right] \)
Do đó: \( -\left[ {{f}^{2}}(x)+2f(x)-8 \right]\ge 0,\forall x\in \left[ -1;9 \right] \) (2).
Ta có: \( {{16.3}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right]{{.4}^{f(x)}}\ge \left( {{m}^{2}}-3m \right){{.6}^{f(x)}} \) nghiệm đúng với mọi \( x\in \left[ -1;9 \right] \).
\( \Leftrightarrow 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge {{m}^{2}}-3m \) nghiệm đúng với mọi \( x\in \left[ -1;9 \right] \).
\( \Leftrightarrow \alpha =\displaystyle \min_{[-1;9]}\left\{ 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}} \right\}\ge {{m}^{2}}-3m \) (3)
Từ (1) và (2), ta có: \( {{\left( \frac{1}{2} \right)}^{f(x)}}\ge {{\left( \frac{1}{2} \right)}^{2}} \) và \( -\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge 0,\forall x\in \left[ -1;9 \right] \).
Suy ra: \( \Leftrightarrow 16.{{\left( \frac{1}{2} \right)}^{f(x)}}-\left[ {{f}^{2}}(x)+2f(x)-8 \right].{{\left( \frac{2}{3} \right)}^{f(x)}}\ge 4,\forall x\in \left[ -1;9 \right] \).
Dầu “=” xảy ra khi và chỉ khi \( f(x)=2\Leftrightarrow x=-1\vee x=a\text{ }\left( 7<a<8 \right) \)
Do đó: \( \alpha =4 \) và \( (3)\Leftrightarrow 4\ge {{m}^{2}}-3m\Leftrightarrow -1\le m\le 4 \)
Vì \( m\in \mathbb{Z} \) nên \( m\in \left\{ -1;0;1;2;3;4 \right\} \)
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Thông Tin Hỗ Trợ Thêm!
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!