Cho tứ diện đều ABCD có cạnh bằng 3a. Hình nón (N) có đỉnh A có đáy là đường tròn ngoại tiếp tam giác BCD. Tính diện tích xung quanh Sxq của (N)

(THPTQG – 110 – 2017) Cho tứ diện đều ABCD có cạnh bằng 3a. Hình nón (N) có đỉnh A có đáy là đường tròn ngoại tiếp tam giác BCD. Tính diện tích xung quanh \( {{S}_{xq}} \) của (N).

A. \( {{S}_{xq}}=12\pi {{a}^{2}} \).

B.  \( {{S}_{xq}}=6\pi {{a}^{2}} \).          

C.  \( {{S}_{xq}}=3\sqrt{3}\pi {{a}^{2}} \).                                      

D.  \( {{S}_{xq}}=16\sqrt{3}\pi {{a}^{2}} \).

Hướng dẫn giải:

Chọn C

Gọi r là bán kính đường tròn ngoại tiếp tam giác BCD.

Ta có:  \( BM=\frac{3a\sqrt{3}}{2};\,\,r=\frac{2}{3}BM=\frac{2}{3}.\frac{3a\sqrt{3}}{2}=a\sqrt{3} \).

 \( {{S}_{xq}}=\pi .r.\ell =\pi .r.AB=\pi .a\sqrt{3}.3a=3\sqrt{3}\pi {{a}^{2}} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *