Cho số phức z thỏa mãn |z+z¯|+2|z−z¯|=8. Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức P=|z−3−3i|. Tính M+m

Cho số phức z thỏa mãn \( \left| z+\bar{z} \right|+2\left| z-\bar{z} \right|=8 \). Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức  \( P=\left| z-3-3i \right| \). Tính  \( M+m \).

A. \( \sqrt{10}+\sqrt{34} \)

B.  \( 2\sqrt{10} \)            

C.  \( \sqrt{10}+\sqrt{58} \)     

D.  \( \sqrt{5}+\sqrt{58} \)

Hướng dẫn giải:

Chọn D.

Gọi  \( z=x+yi,\text{ }x,y\in \mathbb{R} \), ta có:  \( \left| z+\bar{z} \right|+2\left| z-\bar{z} \right|=8\Leftrightarrow \left| x \right|+2\left| y \right|=4\Rightarrow \left\{ \begin{align}  & \left| x \right|\le 4 \\  & \left| y \right|\le 2 \\ \end{align} \right. \), tập hợp K(x;y) biểu diễn số phức z thuộc cạnh các cạnh của trong hình thoi ABCD như hình vẽ.

\( P=\left| z-3-3i \right| \) đạt giá trị lớn nhất khi KM lớn nhất, theo hình vẽ ta có KM lớn nhất khi  \( K\equiv D \) hay K(-4;0) suy ra  \( M=\sqrt{49+9}=\sqrt{58} \).

\( P=\left| z-3-3i \right| \) đạt giá trị nhỏ nhất khi KM nhỏ nhất, theo hình vẽ ta có KM nhỏ nhất khi  \( K\equiv F \) (F là hình chiếu của E trên AB).

Suy ra F(2;1) do AE = AB nên F là trung điểm aB.

Suy ra  \( m=\sqrt{1+4}=\sqrt{5} \).

Vậy  \( M+m=\sqrt{58}+\sqrt{5} \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *