Cho số phức z thỏa mãn |z−6|+|z+6|=20. Gọi M, n lần lượt là môđun lớn nhất và nhỏ nhất của z. Tính M – n

Cho số phức z thỏa mãn \( \left| z-6 \right|+\left| z+6 \right|=20 \). Gọi M, n lần lượt là môđun lớn nhất và nhỏ nhất của z. Tính M – n.

A. \( M-n=2 \)

B.  \( M-n=4 \)                 

C.  \( M-n=7 \)                 

D.  \( M-n=14 \)

Hướng dẫn giải:

Đáp án A.

Gọi  \( z=x+yi\text{ }(x,y\in \mathbb{R}) \).

Theo giả thiết, ta có:  \( \left| z-6 \right|+\left| z+6 \right|=20 \)

 \( \Leftrightarrow \left| x-6+yi \right|+\left| x+6+yi \right|=20\Leftrightarrow \sqrt{{{(x-6)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+6)}^{2}}+{{y}^{2}}}=20 \)   (*)

Gọi M(x;y), F1(6;0) và F2(-6;0).

Khi đó  \( (*)\Leftrightarrow M{{F}_{1}}+M{{F}_{2}}=20>{{F}_{1}}{{F}_{2}}=12 \) nên tập hợp các điểm E là đường elip (E) có hai tiêu điểm F1 và F2. Và độ dài trục lớn bằng 20.

Ta có:  \( c=6;\text{ }2a=20\Leftrightarrow a=10 \) và  \( {{b}^{2}}={{a}^{2}}-{{c}^{2}}=64\Rightarrow b=8 \).

Do đó, phương trình chính tắc của (E) là:  \( \frac{{{x}^{2}}}{100}+\frac{{{y}^{2}}}{64}=1 \).

Suy ra:  \( \max \left| z \right|=OA=O{A}’=10 \) khi  \( z=\pm 10 \) và  \( \min \left| z \right|=OB=O{B}’=8 \) khi  \( z=\pm 8i  \).

Vậy  \( M-n=2 \).

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Fanpage Trung Tâm Luyện Thi Đại Học Nhân Tài Việt

Fanpage Trung Tâm Gia Sư Dạy Kèm Nhân Tài Việt

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *