Cho số phức z thỏa mãn |z−3−4i|=√5. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=|z+2|^2−|z−i|^2. Môđun của số phức w=M+mi là

Cho số phức z thỏa mãn \( \left| z-3-4i \right|=\sqrt{5} \). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức  \( P={{\left| z+2 \right|}^{2}}-{{\left| z-i \right|}^{2}} \). Môđun của số phức  \( w=M+mi \) là

A. \(\left| w \right|=3\sqrt{137}\)

B. \(\left| w \right|=\sqrt{1258}\)

C. \(\left| w \right|=2\sqrt{309}\)              

D. \(\left| w \right|=2\sqrt{314}\)

Hướng dẫn giải:

Chọn B

Đặt  \( z=x+yi,\text{ }x,y\in \mathbb{R} \).

Ta có:  \( \left| z-3-4i \right|=\sqrt{5}\Leftrightarrow \left| (x-3)+(y-4)i \right|=\sqrt{5}\Leftrightarrow {{(x-3)}^{2}}+{{(y-4)}^{2}}=5 \) hay tập hợp các điểm biểu diễn số phức z là đường tròn (C) có tâm I(3;4), bán kính  \( r=\sqrt{5} \).

+ Khi đó:  \( P={{\left| z+2 \right|}^{2}}-{{\left| z-i \right|}^{2}}={{(x+2)}^{2}}+{{y}^{2}}-{{x}^{2}}-{{(y-1)}^{2}}=4x+2y+3 \)

\( \Rightarrow 4x+2y+3-P=0 \), kí hiệu là đường thẳng  \( \Delta \) .

+ Số phức z tồn tại khi và chỉ khi đường thẳng  \( \Delta \)  cắt đường tròn (C)

\( \Leftrightarrow d\left( I,\Delta  \right)\le r\Leftrightarrow \frac{\left| 23-P \right|}{2\sqrt{5}}\le \sqrt{5}\Leftrightarrow \left| P-23 \right|\le 10\Leftrightarrow 13\le P\le 33 \).

Suy ra  \( M=33 \) và  \( m=13 \) \( \Rightarrow w=33+13i \).

Vậy  \( \left| w \right|=\sqrt{1258} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *