Cho số phức z có |z|=1. Tìm giá trị lớn nhất của biểu thức P=∣z^2−z∣+∣z^2+z+1∣

Cho số phức z có \( \left| z \right|=1 \). Tìm giá trị lớn nhất của biểu thức  \( P=\left| {{z}^{2}}-z \right|+\left| {{z}^{2}}+z+1 \right| \).

A. \( \frac{13}{4} \)                                           

B. 3             

C.  \( \sqrt{3} \)  

D.  \( \frac{11}{4} \)

Hướng dẫn giải:

Chọn A

\( P=\left| {{z}^{2}}-z \right|+\left| {{z}^{2}}+z+1 \right|=\left| z \right|\left| z-1 \right|+\left| {{z}^{2}}+z+1 \right|=\left| z-1 \right|+\left| {{z}^{2}}+z+1 \right| \).

Do  \( \left| z \right|=1 \) nên  \( z=\cos x+i.\sin x \). Khi đó:

\( P=\left| z-1 \right|+\left| {{z}^{2}}+z+1 \right|=\left| \cos x+i.\sin x-1 \right|+\left| \cos 2x+i\sin 2x+\cos x+i\sin x+1 \right| \)

\(=\sqrt{{{(\cos x-1)}^{2}}+{{\sin }^{2}}x}+\sqrt{{{(\cos 2x+\cos x+1)}^{2}}+{{(\sin 2x+\sin x)}^{2}}}\)

\( =\sqrt{2-2\cos x}+\sqrt{3+4\cos x+2\cos 2x}=\sqrt{2-2\cos x}+\sqrt{4{{\cos }^{2}}x+4\cos x+1} \)

\( =\sqrt{2-2\cos x}+\left| 2\cos x+1 \right| \).

Đặt  \( t=\cos x,t\in [-1;1] \). Xét hàm số  \( y=\sqrt{2-2t}+\left| 2t+1 \right| \).

+ Với  \( t\ge -\frac{1}{2} \) thì  \( y=\sqrt{2-2t}+2t+1,\text{ }{y}’=\frac{-1}{\sqrt{2-2t}}+2 \).

\( {y}’=0\Leftrightarrow \frac{-1}{\sqrt{2-2t}}+2=0\Leftrightarrow t=\frac{7}{8} \).

\( y(1)=3;\text{ }y\left( \frac{7}{8} \right)=\frac{13}{4};\text{ }y\left( -\frac{1}{2} \right)=\sqrt{3} \).

+ Với  \( t<-\frac{1}{2} thì y=\sqrt{2-2t}-2t-1,\text{ }{y}’=\frac{-1}{\sqrt{2-2t}}-2 \)

\( {y}’=0\Leftrightarrow \frac{-1}{\sqrt{2-2t}}-2=0\Leftrightarrow \sqrt{2-2t}=-\frac{1}{2} \) (phương trình vô nghiệm)

\( y(-1)=3,y\left( -\frac{1}{2} \right)=\sqrt{3} \).

Vậy  \( \underset{[-1;1]}{\mathop{Max}}\,y=\frac{13}{4} \). Do đó giá trị lớn nhất của  \( P=\left| {{z}^{2}}-z \right|+\left| {{z}^{2}}+z+1 \right| \) là  \( \frac{13}{4} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *