Cho phương trình: m(sinx+cosx)+1+1/2(tanx+cotx+1/sinx+1/cosx)=0

Cho phương trình: \( m(\sin x+\cos x)+1+\frac{1}{2}\left( \tan x+\cot x+\frac{1}{\sin x}+\frac{1}{\cos x} \right)=0 \) (*)

a) Giải phương trình khi \( m=\frac{1}{2} \).

b) Tìm m để (*) có nghiệm trên \( \left( 0;\frac{\pi }{2} \right) \).

Hướng dẫn giải:

Với điều kiện:  \( \sin 2x\ne 0 \).

Ta có: (*) \( \Leftrightarrow m(\sin x+\cos x)+1+\frac{1}{2}\left( \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}+\frac{1}{\sin x}+\frac{1}{\cos x} \right)=0 \)

\(\Leftrightarrow m(\sin x+\cos x)+1+\frac{{{\sin }^{2}}x+{{\cos }^{2}}x+\sin x+\cos x}{2\sin x\cos x}=0\)

 \( \Leftrightarrow m\sin 2x(\sin x+\cos x)+\sin 2x+(1+\cos x+\sin x)=0 \)

 \( \Leftrightarrow m\sin 2x(\sin x+\cos x)+{{(\sin x+\cos x)}^{2}}+\sin x+\cos x=0 \)

 \( \Leftrightarrow (\sin x+\cos x)\left[ m\sin 2x+\sin x+\cos x+1 \right]=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & \sin x+\cos x=0\begin{matrix}   {} & {} & {} & (1)  \\\end{matrix} \\  & m\sin 2x+\sin x+\cos x+1=0\begin{matrix}   {} & (2)  \\\end{matrix} \\ \end{align} \right. \).

Xét (2) đặt  \( t=\sin x+\cos x=\sqrt{2}\cos \left( x-\frac{\pi }{4} \right) \) thì  \( {{t}^{2}}=1+\sin 2x \).

Do  \( \sin 2x\ne 0 \) nên  \( \left| t \right|\le \sqrt{2} \) và  \( t\ne \pm 1 \).

Vậy (*) thành:  \( \left[ \begin{align}  & t=0 \\  & m({{t}^{2}}-1)+t+1=0 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & t=0\text{ }(n) \\  & m(t-1)+1=0\text{ }(do\text{ }t\ne -1) \\ \end{align} \right. \).

a) Khi \( m=\frac{1}{2} \) thì ta được:

\(\left[ \begin{align}  & t=0 \\  & t=-1\text{ }(\ell ) \\ \end{align} \right.\Rightarrow \sin x+\cos x=0\Leftrightarrow \tan x=-1\)

 \( \Leftrightarrow x=-\frac{\pi }{4}+k\pi ,\text{ }k\in \mathbb{Z} \).

b) Ta có: \( 0<x<\frac{\pi }{2}\Leftrightarrow -\frac{\pi }{4}<x-\frac{\pi }{4}<\frac{\pi }{4} \).

Lúc đó:  \( \frac{\sqrt{2}}{2}<\cos \left( x-\frac{\pi }{4} \right)\le 1\Rightarrow 1<t\le \sqrt{2} \).

Do  \( t=0\notin \left( 1;\sqrt{2} \right] \) nên ta xét phương trình:  \( m(t-1)+1=0 \)  (**)

 \( \Leftrightarrow mt=m-1\Leftrightarrow t=1-\frac{1}{m} \) (do m = 0 thì (**) vô nghiệm)

Do đó: yêu cầu bài toán  \( \Leftrightarrow 1<1-\frac{1}{m}\le \sqrt{2}\Leftrightarrow \left\{ \begin{align}  & -\frac{1}{m}>0 \\ & 1-\sqrt{2}\le \frac{1}{m} \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & m<0 \\  & m\le \frac{1}{1-\sqrt{2}}=-\sqrt{2}-1 \\ \end{align} \right.\Leftrightarrow m\le -\sqrt{2}-1 \).

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Hệ Thống Trung Tâm Nhân Tài Việt!

Fanpage Trung Tâm Luyện Thi Đại Học Nhân Tài Việt

Fanpage Trung Tâm Gia Sư Dạy Kèm Nhân Tài Việt

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *