Cho phương trình log9x2−log3(5x−1)=−log3m (m là tham số thực)

(THPTQG – 2019 – 103) Cho phương trình \( {{\log }_{9}}{{x}^{2}}-{{\log }_{3}}\left( 5x-1 \right)=-{{\log }_{3}}m  \) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên của m để phương trình đã cho có nghiệm?

A. 4

B. 6                                   

C. Vô số                            

D. 5

Hướng dẫn giải:

Đáp án A.

Điều kiện:  \( \left\{ \begin{align} & x>\frac{1}{5} \\  & m>0 \\ \end{align} \right. \)

Xét phương trình:  \( {{\log }_{9}}{{x}^{2}}-{{\log }_{3}}\left( 5x-1 \right)=-{{\log }_{3}}m  \) (1)

 (1 \( )\Leftrightarrow {{\log }_{3}}x-{{\log }_{3}}\left( 5x-1 \right)=-{{\log }_{3}}m \)   \( \Leftrightarrow {{\log }_{3}}\frac{5x-1}{x}={{\log }_{3}}m\Leftrightarrow \frac{5x-1}{x}=m  \)

Cách 1:

 \( \Leftrightarrow m=5-\frac{1}{x} \) (2)

Xét  \( f(x)=5-\frac{1}{x} \) trên khoảng  \( \left( \frac{1}{5};+\infty  \right) \).

Có  \( {f}'(x)=\frac{1}{{{x}^{2}}}>0,\forall x\in \left( \frac{1}{5};+\infty  \right) \)

Ta có bảng biến thiên của hàm số f(x):

Phương trình (1) có nghiệm khi và chỉ phương trình (2) có nghiệm  \( x>\frac{1}{5} \).

Từ bảng biến thiên suy ra phương trình (1) có nghiệm khi và chỉ khi  \( 0<m<5 \).

Mà  \( m\in \mathbb{Z} \) và  \( m>0 \) nên  \( m\in \left\{ 1;2;3;4 \right\} \).

Vậy có 4 giá trị nguyên của m để phương trình đã cho có nghiệm.

Cách 2:

 \( \Leftrightarrow \left( 5-m \right)x=1 \) (2)

Với m = 5, phương trình (2) thành 0.x = 1 (vô nghiệm)

Với  \( m\ne 5 \), (2) \( \Leftrightarrow x=\frac{1}{5-m} \)

Xét  \( x>\frac{1}{5}\Leftrightarrow ~\frac{1}{5-m}>\frac{1}{5} \) \( \Leftrightarrow \frac{m}{5(5-m)}>0\Leftrightarrow 0<m<5 \)

Mà  \( m\in \mathbb{Z} \) nên  \( m\in \left\{ 1;2;3;4 \right\} \)

Vậy có 4 giá trị nguyên của m để phương trình đã cho có nghiệm.

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *