Cho phương trình: (cosx+1)(cos2x−mcosx)=msin^2x

Cho phương trình: \( (\cos x+1)(\cos 2x-m\cos x)=m{{\sin }^{2}}x \)  (*)

a) Giải (*) khi \( m=-2 \).

b) Tìm m sao cho (*) có đúng hai nghiệm trên \( \left[ 0;\frac{2\pi }{3} \right] \).

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow (\cos x+1)(2{{\cos }^{2}}x-1-m\cos x)=m(1-{{\cos }^{2}}x) \)

 \( \Leftrightarrow (\cos x+1)[2{{\cos }^{2}}x-1-m\cos x-m(1-\cos x)]=0 \)

 \( \Leftrightarrow (\cos x+1)(2{{\cos }^{2}}x-1-m)=0 \).

a) Khi \( m=-2 \) thì (*) thành:

 \( (\cos x+1)(2{{\cos }^{2}}x+1)=0\Leftrightarrow \cos x=-1\Leftrightarrow x=\pi +k2\pi ,\text{ }k\in \mathbb{Z} \).

b) Khi \( x\in \left[ 0;\frac{2\pi }{3} \right] \) thì \( \cos x=t\in \left[ -\frac{1}{2};1 \right] \).

Nhận xét răng với mỗi t trên  \( \left[ -\frac{1}{2};1 \right] \) ta chỉ tìm được duy nhất một x trên  \( \left[ 0;\frac{2\pi }{3} \right] \).

Yêu cầu bài toán  \( \Leftrightarrow 2{{t}^{2}}-1-m=0 \) có đúng hai nghiệm trên  \( \left[ -\frac{1}{2};1 \right] \).

Xét  \( y=2{{t}^{2}}-1\text{ }(P) \) và  \( y=m\text{ }(d) \).

Ta có:  \( {y}’=4t\Rightarrow {y}’=0\Leftrightarrow t=0 \).

Bảng biến thiên:

Vậy (*) có đúng hai nghiệm trên  \( \left[ 0;\frac{2\pi }{3} \right] \) \( \Leftrightarrow (d) \) cắt (P) tại hai điểm phân biệt trên  \( \left[ -\frac{1}{2};1 \right] \)

 \( \Leftrightarrow -1<m\le \frac{1}{2} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *