Cho phương trình: 2sin^2x−sinxcosx−cos^2x=m

Cho phương trình: \( 2{{\sin }^{2}}x-\sin x\cos x-{{\cos }^{2}}x=m \)   (*)

a) Tìm m sao cho phương trình có nghiệm.

b) Giải phương trình khi \( m=-1 \).

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow (1-\cos 2x)-\frac{1}{2}\sin 2x-\frac{1}{2}(1+\cos 2x)=m\Leftrightarrow \sin 2x+3\cos 2x=-2m+1 \)

a) (*) có nghiệm \( \Leftrightarrow {{a}^{2}}+{{b}^{2}}\ge {{c}^{2}} \)

 \( \Leftrightarrow 1+9\ge {{(1-2m)}^{2}}\Leftrightarrow 4{{m}^{2}}-4m-9\le 0\Leftrightarrow \frac{1-\sqrt{10}}{2}\le m\le \frac{1+\sqrt{10}}{2} \).

b) Khi \( m=-1 \) ta được phương trình: \( \sin 2x+3\cos 2x=3 \)  (1)

\(\Rightarrow \frac{1}{\sqrt{{{1}^{2}}+{{3}^{2}}}}\sin 2x+\frac{3}{\sqrt{{{1}^{2}}+{{3}^{2}}}}\cos 2x=\frac{3}{\sqrt{{{1}^{2}}+{{3}^{2}}}}\)

\(\Leftrightarrow \sin 2x.\cos \alpha +\cos 2x.\sin \alpha =\sin \beta \), với \(\cos \alpha =\frac{1}{\sqrt{10}},\sin \alpha =\frac{3}{\sqrt{10}},\sin \beta =\frac{3}{\sqrt{10}}\)

 \( \Leftrightarrow \sin \left( 2x+\alpha  \right)=\sin \beta \Leftrightarrow \left[ \begin{align}  & 2x+\alpha =\beta +k2\pi  \\ & 2x+\alpha =\pi -\beta +k2\pi  \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & x=\frac{-\alpha +\beta }{2}+k\pi  \\  & x=\frac{\pi -\alpha -\beta }{2}+k\pi  \\ \end{align} \right.,k\in \mathbb{Z} \), với \(\cos \alpha =\frac{1}{\sqrt{10}},\sin \alpha =\frac{3}{\sqrt{10}},\sin \beta =\frac{3}{\sqrt{10}}\).

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *