Cho một hình nón có bán kính đáy bằng 2a. Mặt phẳng (P) đi qua đỉnh (S) của hình nón, cắt đường tròn đáy tại A và B sao cho AB=2a√3

Cho một hình nón có bán kính đáy bằng 2a. Mặt phẳng (P) đi qua đỉnh (S) của hình nón, cắt đường tròn đáy tại A và B sao cho \( AB=2a\sqrt{3} \), khoảng cách từ tâm đường tròn đáy đến mặt phẳng (P) bằng  \( \frac{a\sqrt{2}}{2} \). Thể tích khối nón đã cho bằng

A. \( \frac{8\pi {{a}^{3}}}{3} \).

B.  \( \frac{4\pi {{a}^{3}}}{3} \).                                     

C.  \( \frac{2\pi {{a}^{3}}}{3} \).             

D.  \( \frac{\pi {{a}^{3}}}{3} \).

Hướng dẫn giải:

Chọn B

Gọi G là trung điểm của AB, O là tâm của đáy. Khi đó  \( \left\{ \begin{align}  & SO\bot AB \\  & OC\bot AB \\ \end{align} \right.\Rightarrow (SOC)\bot AB \).

Gọi H là hình chiếu của O lên SC thì  \( OH\bot (SAB) \) nên  \( OH=\frac{a\sqrt{2}}{2} \).

 \( OB=2a,\,\,BC=a\sqrt{3}\Rightarrow OC=a \).

Xét tam giác vuông SOC, ta có  \( \frac{1}{S{{O}^{2}}}=\frac{1}{O{{H}^{2}}}-\frac{1}{O{{C}^{2}}}=\frac{1}{{{a}^{2}}}\Rightarrow SO=a \).

Vậy thể tích khối nón giới hạn bởi hình nón đã cho là  \( V=\frac{1}{3}\pi .{{(2a)}^{2}}.a=\frac{4\pi {{a}^{3}}}{3} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *