cho mặt phẳng (P):2x−2y+z+3=0 và mặt cầu (S):(x−1)^2+(y+3)2+z2=9 và đường thẳng d:x/−2=y+2/1=z+1/2

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \( (P):2x-2y+z+3=0 \) và mặt cầu  \( (S):{{(x-1)}^{2}}+{{(y+3)}^{2}}+{{z}^{2}}=9 \) và đường thẳng  \( d:\frac{x}{-2}=\frac{y+2}{1}=\frac{z+1}{2} \). Cho các phát biểu sau đây:

(I) Đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt.

(II) Mặt phẳng (P) tiếp xúc với mặt cầu (S).

(III) Mặt phẳng (P) và mặt cầu (S) không có điểm chung.

(IV) Đường thẳng d cắt mặt phẳng (P) tại một điểm.

Số phát biểu đúng là:

A. 4

B. 1

C. 2                                   

D. 3

Hướng dẫn giải:

Chọn D

Mặt cầu (S) có tâm I(1;-3;0), bán kính  \( R=3 \).

Phương trình tham số của đường thẳng  \( d:\left\{ \begin{align} & x=-2t \\ & y=-2+t \\  & z=-1+2t \\ \end{align} \right. \).

Xét hệ phương trình:  \( \left\{ \begin{align}  & x=-2t \\  & y=-2+t \\  & z=-1+2t \\  & {{(x-1)}^{2}}+{{(y+3)}^{2}}+{{z}^{2}}=9 \\ \end{align} \right.\Rightarrow 9{{t}^{2}}+2t-6=0 \)  (1)

Phương trình (1) có 2 nghiệm phân biệt nên d cắt (S) tại 2 điểm phân biệt.

 \( d\left( I,(P) \right)=\frac{\left| 2.1-2.(-3)+0+3 \right|}{3}=\frac{11}{3}>R\Rightarrow (P) \) và (S) không có điểm chung.

Xét hệ phương trình:  \( \left\{ \begin{align}  & x=-2t \\  & y=-2+t \\  & z=-1+2t \\  & 2x-2y+z+3=0 \\ \end{align} \right.\Rightarrow t=\frac{3}{2} \) nên d cắt (P) tại một điểm.

Vậy có 3 phát biểu đúng.

Các bài toán liên quan

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *