cho mặt cầu (S):(x−1)2+(y−2)2+(z−1)2=9, mặt phẳng (P):x−y+z+3=0 và điểm N(1;0;-4) thuộc (P). Một đường thẳng Δ đi qua N nằm trong (P) cắt (S) tại hai điểm A, B thỏa mãn AB=4

Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \( (S):{{(x-1)}^{2}}+{{(y-2)}^{2}}+{{(z-1)}^{2}}=9 \), mặt phẳng  \( (P):x-y+z+3=0 \) và điểm N(1;0;-4) thuộc (P). Một đường thẳng  \( \Delta  \) đi qua N nằm trong (P) cắt (S) tại hai điểm A, B thỏa mãn  \( AB=4 \). Gọi  \( \vec{u}=(1;b;c),\text{ }(c>0) \) là một vectơ chỉ phương của  \( \Delta  \), tổng  \( b+c \)  bằng

A. 1

B. 3

C. -1                                 

D. 45

Hướng dẫn giải:

Chọn D

Ta có mặt cầu (S) có tâm I(1;2;1), bán kính  \( R=3 \).

Gọi H và K lần lượt là hình chiếu vuông góc của I lên đường thẳng  \( \Delta  \) và mặt phẳng (P).

Suy ra H là trung điểm của đoạn AB nên:

 \( AH=2\Rightarrow d\left( I,\Delta  \right)=IH=\sqrt{I{{A}^{2}}-A{{H}^{2}}}=\sqrt{5} \) và  \( IK=d\left( I,(P) \right)=\frac{\left| 1-2+1+3 \right|}{\sqrt{3}}=\sqrt{3} \).

Ta có:  \( \left\{ \begin{align}  & IK\bot (P) \\  & \Delta \subset (P) \\ \end{align} \right.\Rightarrow IK\bot \Delta  \) mà  \( IH\bot \Delta \Rightarrow \Delta \bot KH  \)

hay  \( KH=d\left( K,\Delta  \right) \) và  \( KH=\sqrt{I{{H}^{2}}-I{{K}^{2}}}=\sqrt{2} \).

Do  \( IK\bot (P) \) nên phương trình tham số đường thẳng  \( IK:\left\{ \begin{align}  & x=1+t \\  & y=2-t \\  & z=1+t \\ \end{align} \right.\Rightarrow K(1+t;2-t;1+t) \).

Mà  \( K\in (P)\Rightarrow 1+t-2+t+1+t+3=0\Leftrightarrow t=-1\Rightarrow K(0;3;0) \).

Từ đây ta có:  \( KH=d\left( K,\Delta  \right)=\frac{\left| \left[ \overrightarrow{KN},\vec{u} \right] \right|}{\left| {\vec{u}} \right|}=\frac{\sqrt{{{(4b-3c)}^{2}}+{{(-c-4)}^{2}}+{{(b+3)}^{2}}}}{\sqrt{1+{{b}^{2}}+{{c}^{2}}}}=\sqrt{2} \)  (*).

Mặt khác, ta có:  \( \Delta \subset (P)\Rightarrow \vec{u}\bot {{\vec{n}}_{P}}=0\Leftrightarrow 1-b+c=0\Leftrightarrow b=c+1 \).

Thay vào (*) ta được:  \( \sqrt{{{(c+4)}^{2}}+{{(-c-4)}^{2}}+{{(c+4)}^{2}}}=\sqrt{2}.\sqrt{1+{{(c+1)}^{2}}+{{c}^{2}}} \)

 \( \Leftrightarrow 3{{c}^{2}}-24c+48=4{{c}^{2}}+4c+4\Leftrightarrow {{c}^{2}}-20c-44=0\Leftrightarrow \left[ \begin{align}  & c=22\text{ }(n) \\  & c=-2\text{ }(\ell ) \\ \end{align} \right. \).

Suy ra  \( b=23\Rightarrow b+c=45 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *