Cho khối chóp S.ABC có thể tích V. Gọi B’, C’ lần lượt là trung điểm của AB, AC. Tính theo V thể tích khối chóp S.AB’C’

Cho khối chóp S.ABC có thể tích V. Gọi B’, C’ lần lượt là trung điểm của AB, AC. Tính theo V thể tích khối chóp S.AB’C’.

A. \( \frac{1}{3}V \)                                                                                            

B.  \( \frac{1}{2}V  \)                

C.  \( \frac{1}{12}V  \)    

D.  \( \frac{1}{4}V  \)

Hướng dẫn giải:

Đáp án D.

Ta có tỉ số thể tích:  \( \frac{{{V}_{A.SB’C’}}}{{{V}_{A.SBC}}}=\frac{AB’}{AB}.\frac{AC’}{AC}=\frac{1}{2}.\frac{1}{2}=\frac{1}{4} \)

Do đó:  \( {{V}_{A.SB’C’}}=\frac{1}{4}{{V}_{A.SBC}}=\frac{1}{4}V  \)

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *