Cho hình tứ diện ABCD có \( AD\bot (ABC) \), ABC là tam giác vuông tại B. Biết \( BC=2\,\,cm,\,\,AB=2\sqrt{3}\,\,cm,\,\,AD=6\,\,cm \). Quay các tam giác ABC và ABD (bao gồm cả điểm bên trong 2 tam giác) xung quanh đường thẳng AB ta được 2 khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng
A. \( \sqrt{3}\pi \,\,c{{m}^{3}} \).
B. \( \frac{5\sqrt{3}}{2}\pi \,\,c{{m}^{3}} \).
C. \( \frac{3\sqrt{3}}{2}\pi \,\,c{{m}^{3}} \).
D. \( \frac{64\sqrt{3}}{3}\,\,c{{m}^{3}} \).
Hướng dẫn giải:
Chọn C
Dễ thấy \( AD\bot (ABC)\Rightarrow AD={{R}_{1}} \).
Gọi \( M=BD\cap AC \) và N là hình chiếu của M trên AB. Dễ dàng chứng minh được tỉ lệ:
\( \frac{MN}{BC}=\frac{AN}{AB}\,\,\,\,(1) \) và \( \frac{MN}{AD}=\frac{BN}{AB}\,\,\,\,(2) \)
\( \xrightarrow{(1)\div (2)}\frac{AD}{BC}=\frac{AN}{BN}=3\Rightarrow \frac{AN}{AB}=\frac{3}{4};\,\,\frac{BN}{AB}=\frac{1}{4} \).
\( \Rightarrow AN=\frac{3\sqrt{3}}{2};\,\,BN=\frac{\sqrt{3}}{2};\,\,MN=\frac{3}{2} \).
Phần thể tích chung của 2 khối tròn xoay là phần thể tích khi quay tam giác AMB xung quanh trục AB. Gọi V1 là thể tích khối tròn xoay khi quay tam giác BMN xung quanh AB và V2 là thể tích khối tròn xoay khi tam giác AMN xung quanh AB.
Dễ tính được \( {{V}_{1}}=\frac{3\sqrt{3}\pi }{8}\,\,c{{m}^{3}};\,\,{{V}_{2}}=\frac{9\sqrt{3}\pi }{8}\,\,c{{m}^{3}}\Rightarrow {{V}_{1}}+{{V}_{2}}=\frac{3\sqrt{3}\pi }{2}\,\,c{{m}^{3}} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Dạy kèm môn Toán Cao Cấp - Xác suất thống kê
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
No comment yet, add your voice below!