Cho hình trụ có O,O′ là tâm hai đáy. Xét hình chữ nhật ABCD có A, B cùng thuộc (O) và C, D cùng thuộc (O′) sao cho AB=a√3,BC=2a

Cho hình trụ có \( O,\,\,O’ \) là tâm hai đáy. Xét hình chữ nhật ABCD có A, B cùng thuộc (O) và C, D cùng thuộc  \( (O’) \) sao cho  \( AB=a\sqrt{3},\,\,BC=2a \) đồng thời (ABCD) tạo với mặt phẳng đáy hình trụ góc  \( 60{}^\circ \) . Thể tích khối trụ bằng

A. \( \pi {{a}^{3}}\sqrt{3} \).

B.  \( \frac{\pi {{a}^{3}}\sqrt{3}}{9} \).                                         

C.  \( \frac{\pi {{a}^{3}}\sqrt{3}}{3} \).                                         

D.  \( 2\pi {{a}^{3}}\sqrt{3} \).

Hướng dẫn giải:

Chọn A

Gọi M, N lần lượt là trung điểm của CD, AB và I là trung điểm của  \( OO’ \).

Suy ra góc giữa mặt phẳng (ABCD) và mặt phẳng đáy là  \( \widehat{IMO’}=60{}^\circ \) .

Ta có:  \( IM=\frac{1}{2}MN=\frac{1}{2}BC=a \).

Xét  \( \Delta IO’M \) vuộng tại O, ta có  \( IO’=IM.\sin \widehat{IMO}=\frac{a\sqrt{3}}{2}\Rightarrow h=OO’=2IO’=a\sqrt{3} \);

 \( O’M=IM.\cos \widehat{IMO’}=\frac{a}{2} \).

Xét  \( \Delta O’MD \) vuông tại M, có  \( O’M=\frac{a}{2},\,\,MD=\frac{1}{2}CD=\frac{1}{2}AB=\frac{a\sqrt{3}}{2} \).

 \( \Rightarrow r=O’D=\sqrt{O'{{M}^{2}}+M{{D}^{2}}}=\sqrt{{{\left( \frac{a}{2} \right)}^{2}}+{{\left( \frac{a\sqrt{3}}{2} \right)}^{2}}}\Rightarrow r=a \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *