Cho hình trụ có hai đáy là hình tròn tâm O và O’, chiều cao h=a√3. Mặt phẳng đi qua tâm O và tạo với OO’ một góc 30∘

Cho hình trụ có hai đáy là hình tròn tâm O và O’, chiều cao \( h=a\sqrt{3} \). Mặt phẳng đi qua tâm O và tạo với OO’ một góc  \( 30{}^\circ \) , cắt hai đường tròn tâm O và O’ tại bốn điểm là bốn đỉnh của một hình thang có đáy lớn gấp đôi đáy nhỏ và diện tích bằng  \( 3{{a}^{2}} \). Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng

A. \( \frac{\sqrt{3}\pi {{a}^{3}}}{3} \).

B.  \( \sqrt{3}\pi {{a}^{3}} \).             

C.  \( \frac{\sqrt{3}\pi {{a}^{3}}}{12} \). 

D.  \( \frac{\sqrt{3}\pi {{a}^{3}}}{4} \).

Hướng dẫn giải:

Chọn B

Giả sử ABCD là hình thang mà đề bài đề cập (BC đáy lớn, AD đáy nhỏ) và r là bán kính đáy của hình trụ.

Theo đề:  \( \left\{ \begin{align}  & BC=2r \\  & BC=2AD \\ \end{align} \right.\Rightarrow AD=r \).

Kẻ  \( O’I\bot AD\Rightarrow AD\bot (OO’I)\Rightarrow (ABCD)\bot (OO’J) \).

Suy ra  \( \left( OO’,(ABCD) \right)=\widehat{O’OI}=30{}^\circ \) .

 \( \cos \widehat{O’OI}=\frac{OO’}{OI}\Leftrightarrow OI=\frac{OO’}{\cos 30{}^\circ }=\frac{a\sqrt{3}}{\frac{\sqrt{3}}{2}}=2a \).

Ta có:  \( {{S}_{ABCD}}=\frac{(AD+BC).IO}{2}\Leftrightarrow 3{{a}^{2}}=\frac{(r+2r).2a}{2}\Leftrightarrow r=a \).

Thể tích của khối trụ là  \( V=\pi {{r}^{2}}h=\pi {{a}^{2}}.a\sqrt{3}=\pi {{a}^{3}}\sqrt{3} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *