Cho hình trụ có chiều cao bằng 6√2 cm. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, A’B’ mà AB=A′B′=6 cm, diện tích tứ giác ABB’A’ bằng 60 cm2. Tính bán kính đáy của hình trụ

Cho hình trụ có chiều cao bằng \( 6\sqrt{2}\text{ }cm  \). Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, A’B’ mà  \( AB=A’B’=6\text{ }cm  \), diện tích tứ giác ABB’A’ bằng 60 cm2. Tính bán kính đáy của hình trụ.

A. 5 cm

B. \( 3\sqrt{2}\text{ }cm  \)                                       

C. 4 cm             

D.  \( 5\sqrt{2}\text{ }cm  \)

Hướng dẫn giải:

Đáp án C.

Gọi O, O’ là tâm các đáy hình trụ (như hình vẽ).

Vì AB = A’B’ nên (ABB’A’) đi qua trung điểm của đoạn OO’ và ABB’A’ là hình chữ nhật.

Ta có:  \( {{S}_{ABB’A’}}=AB.AA’\Leftrightarrow 60=6.AA’ \) \( \Rightarrow AA’=10\text{ }cm \)

Gọi A1, B1 lần lượt là hình chiếu của A, B trên mặt đáy chứa A’ và B’.

 \( \Rightarrow A’B{{B}_{1}}{{A}_{1}} \) là hình chữ nhật có  \( A’B’=6\text{ }cm \).

\({{B}_{1}}B’=\sqrt{BB'{^{2}}-BB_{1}^{2}}=\sqrt{{{10}^{2}}-{{\left( 6\sqrt{2} \right)}^{2}}}=2\sqrt{7}\)

Gọi R là bán kính đáy của hình trụ, ta có:  \( 2R=A'{{B}_{1}}=\sqrt{{{B}_{1}}B'{^{2}}+A’B'{^{2}}}=8 \)

 \( \Rightarrow R=4\text{ }cm  \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *