Cho hình trụ có bán kính R và chiều cao 3–√R. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng 30∘

Cho hình trụ có bán kính R và chiều cao  \( \sqrt{3}R \). Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng  \( 30{}^\circ \) . Tính khoảng cách giữa AB và trục của hình trụ:

A. \( d\left( AB,d \right)=\frac{R\sqrt{3}}{2} \).

B.  \( d\left( AB,d \right)=R \).             

C.  \( d\left( AB,d \right)=R\sqrt{3} \).       

D.  \( d\left( AB,d \right)=\frac{R}{2} \).

Hướng dẫn giải:

Chọn A

Gọi I,J là tâm của hai đáy (hình vẽ).

Từ B kẻ đường thẳng song song với trục d của hình trụ, cắt đường tròn đáy kia tại C.

Khi đó,  \( \left( AB,d \right)=\left( AB,BC \right)=\widehat{ABC}=30{}^\circ  \).

Xét tam giác ABC vuông tại C, ta có:

 \( \tan \widehat{ABC}=\frac{AC}{CB}\Rightarrow AC=CB.\tan \widehat{ABC}=R\sqrt{3}.\tan 30{}^\circ =R\sqrt{3}.\frac{1}{\sqrt{3}}=R \).

Lại có \(d\parallel (ABC)\) và \(AB\subset (ABC)\) nên \( d\left( d,AB \right)=d\left( d,(ABC) \right)=d\left( J,(ABC) \right) \).

Kẻ  \( JH\bot AC,\,\,H\in AC \). Vì  \( BC\bot JH \) nên  \( JH\bot (ABC) \).

Suy ra  \( d\left( J,(ABC) \right)=JH \).

Xét tam giác JAC, ta thấy  \( JA=JC=AC=R \) nên JAC là tam giác đều cạnh R.

Khi đó chiều cao là  \( JH=\frac{R\sqrt{3}}{2} \).

Vậy  \( d\left( d,AB \right)=\frac{R\sqrt{3}}{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *