Cho hình trụ có bán kính đáy bằng R và chiều cao bằng 3R/2. Mặt phẳng (α) song song với trục của hình trụ và cách trục một khoảng bằng R/2. Tính diện tích thiết diện của hình trụ cắt bởi mặt phẳng (α)

Cho hình trụ có bán kính đáy bằng R và chiều cao bằng \( \frac{3R}{2} \). Mặt phẳng \( \left( \alpha  \right) \) song song với trục của hình trụ và cách trục một khoảng bằng  \( \frac{R}{2} \). Tính diện tích thiết diện của hình trụ cắt bởi mặt phẳng  \( \left( \alpha  \right) \).

A. \( \frac{2{{R}^{2}}\sqrt{3}}{3} \)

B.  \( \frac{3{{R}^{2}}\sqrt{3}}{2} \)                              

C.  \( \frac{3{{R}^{2}}\sqrt{2}}{2} \)                              

D.  \( \frac{2{{R}^{2}}\sqrt{2}}{3} \)

Hướng dẫn giải:

Đáp án B.

Thiết diện của hình trụ cắt bởi mặt phẳng  \( \left( \alpha  \right) \) là hình chữ nhật ABCD với  \( BC=\frac{3R}{2} \).

Gọi H là trung điểm AB, ta có:  \( AH=\frac{R}{2} \) \( \Rightarrow AB=2HB=2\sqrt{{{R}^{2}}-A{{H}^{2}}}=R\sqrt{3} \)

Vậy diện tích thiết diện là:  \( S=AB.CD=R\sqrt{3}.\frac{3R}{2}=\frac{3{{R}^{2}}\sqrt{3}}{2} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *