Cho hình trụ có bán kính đáy bằng R và chiều cao bằng 3R/2. Mặt phẳng (α) song song với trục của hình trụ và cách trục một khoảng bằng

Cho hình trụ có bán kính đáy bằng R và chiều cao bằng \( \frac{3R}{2} \). Mặt phẳng  \( (\alpha ) \) song song với trục của hình trụ và cách trục một khoảng bằng  \( \frac{R}{2} \). Diện tích thiết diện của hình trụ cắt bởi mặt phẳng  \( (\alpha ) \) là:

A. \( \frac{3\sqrt{2}{{R}^{2}}}{2} \).

B.  \( \frac{3\sqrt{3}{{R}^{2}}}{2} \).                             

C.  \( \frac{2\sqrt{3}{{R}^{2}}}{3} \).                             

D.  \( \frac{2\sqrt{2}{{R}^{2}}}{3} \).

Hướng dẫn giải:

Chọn B

Giả sử thiết diện là hình chữ nhật ABCD như hình vẽ.

Gọi H là trung điểm của BC suy ra  \( OH\bot BC \) suy ra  \( d\left( O,BC \right)=\frac{R}{2} \).

Khi đó  \( BC=2HB=2\sqrt{O{{B}^{2}}-O{{H}^{2}}}=2\sqrt{{{R}^{2}}-{{\left( \frac{R}{2} \right)}^{2}}}=R\sqrt{3} \).

Suy ra  \( {{S}_{ABCD}}=BC.AB=R\sqrt{3}.\frac{3R}{2}=\frac{3\sqrt{3}{{R}^{2}}}{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *